HĐ2 trang 7 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

443

Với giải HĐ2 trang 7 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 1: Giá trị lượng giác của góc lượng giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

HĐ2 trang 7 Toán 11 Tập 1  Kết nối tri thức Giải Toán lớp 11

HĐ2 trang 7 Toán 11 Tập 1Nhận biết hệ thức Chasles

Cho ba tia Ou, Ov, Ow với số đo của các góc hình học uOv và vOw lần lượt là 30° và 45°.

Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác (ảnh 4)

a) Xác định số đo của ba góc lượng giác (Ou, Ov), (Ov, Ow) và (Ou, Ow) được chỉ ra ở Hình 1.5.

b) Với các góc lượng giác ở câu a, chứng tỏ rằng có một số nguyên k để

sđ(Ou, Ov) + sđ(Ov, Ow) = sđ(Ou, Ow) + k360°.

Lời giải:

a) Quan sát Hình 1.5 ta có:

sđ(Ou, Ov) = 30°;

sđ(Ov, Ow) = 45°;

sđ(Ou, Ow) = – (360° – 30° – 45°) = – 285°.

b)  Ta có: sđ(Ou, Ov) + sđ(Ov, Ow) = 30° + 45° = 75°.

Lại có: – 285° + 1 . 360° = 75°.

Vậy tồn tại một số nguyên k = 1 để sđ(Ou, Ov) + sđ(Ov, Ow) = sđ(Ou, Ow) + k360°.

Đánh giá

0

0 đánh giá