Giải Toán 11 trang 42 Tập 1 (Chân trời sáng tạo)

367

Với giải SGK Toán 11 Chân trời sáng tạo trang 42 chi tiết trong Bài tập cuối chương 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 42 Tập 1 (Chân trời sáng tạo)

Bài 1 trang 42 Toán 11 Tập 1: Góc lượng giác nào tương ứng với chuyển động quay 315 vòng ngược chiều kim đồng hồ?

A. 16π5;

B. 165ο

C. 1 152°;

D. 1 152π.

Lời giải:

Đáp án đúng là C

Mỗi vòng kim đồng hồ quay là: 2π nên góc lượng giác quét được khi quay 315 vòng là 315.2π=3.2π+2π5 rad.

Khi đó điểm biểu diễn cho các góc lượng giác này có công thức số đo tổng quát là 2π5+k2π,k.

Xét Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 1). Do đó góc này không tương ứng với góc đã cho.

Xét Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 2). Do đó góc này không tương ứng với góc đã cho.

Xét Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 3). Do đó góc này tương ứng với góc đã cho.

Xét Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 4). Do đó góc này không tương ứng với góc đã cho.

Bài 2 trang 42 Toán 11 Tập 1Trong trường hợp nào dưới đây cosα = cosβ và sinα = – sinβ ?

A. β = – α;

B. β = π – α;

C. β = π + α;

D. β=π2+α.

Lời giải:

Đáp án đúng là: A

+) Xét β = – α, khi đó:

cosβ = cos(– α) = cosα;

sinβ = sin(– α) = sinα hay sinα = – sinβ .

Do đó A thỏa mãn.

+) Xét β = π – α, khi đó:

cosβ = cos(π – α) = – cosα;

sinβ = sin(π – α) = sinα.

Do đó B không thỏa mãn.

+) Xét β = π + α, khi đó:

cosβ = cos(π + α) = – cosα;

sinβ = sin(π + α) = – sinα.

Do đó C không thỏa mãn.

+) Xét β=π2+α, khi đó:

cosβ = cos(π2+α) = – sinα;

sinβ = sin(π2+α) = cosα.

Do đó D không thỏa mãn.

Bài 3 trang 42 Toán 11 Tập 1Khẳng định nào sau đây đúng?

A. Hàm số y = sinx là hàm số chẵn;

B. Hàm số y = cosx là hàm số chẵn;

C. Hàm số y = tanx là hàm số chẵn;

D. Hàm số y = cotx là hàm số chẵn.

Lời giải:

Đáp án đúng là: B

Ta có tập xác định của hàm số y = cosx là ℝ.

Nếu với x ∈ ℝ thì – x ∈ ℝ và y(– x) = cos(– x) = cosx = y(x).

Vậy hàm số y = cosx là hàm số chẵn.

Bài 4 trang 42 Toán 11 Tập 1Nghiệm âm lớn nhất của phương trình lượng giác cos2x = cosx+π3 là

A. π9;

B. 5π3;

C. 7π9;

D. 13π9.

Lời giải:

Đáp án đúng là: A

cos2x = cosx+π3

Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 5)

+) Với x = π3 + k2π, kZ đạt giá trị âm lớn nhất khi k = – 1 và bằng: π32π=5π3.

+) Với x=π9+k2π3,k đạt giá trị âm lớn nhất khi k = 0 và bằng: π9+0.2π9=π9.

Vậy nghiệm âm lớn nhất của phương trình đã cho là π9.

Bài 5 trang 42 Toán 11 Tập 1Số nghiệm của phương trình tanx = 3 trong khoảng π2;7π3 là

A. 1;

B. 2;

C. 3;

D. 4.

Lời giải:

Xét phương trình tanx = 3

⇔ x ≈ 1,25 + kπ, k ∈ ℤ

Xét: π2<x<7π3π2<1,25+kπ<7π3 -0,9 < k < 1,94.

Mà k ∈ ℤ nên k ∈ {0; 1}.

Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng π2;7π3.

Bài 6 trang 42 Toán 11 Tập 1: Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t) = 29 + 3sinπ12(t-9), với h được tính bằng độ C và t là thời gian trong ngày tính bằng giờ. Nhiệt độ thấp nhất trong ngày là bao nhiêu độ C và vào lúc mấy giờ

(Theo https://www.sciencedirect.com/science/article/abs/pii/0168192385900139)

A. 32°C, lúc 15 giờ;

B. 29°C, lúc 9 giờ;

C. 26°C, lúc 3 giờ;

D. 26°C, lúc 0 giờ

Lời giải:

Vì Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 6)

Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 7)

Nhiệt độ thấp nhất trong ngày là 26°C khi

Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 8)

Vì vậy vào thời điểm 3 giờ trong ngày thì nhiều độ thấp nhất của thành phố là 26°C.

Bài 7 trang 42 Toán 11 Tập 1Một chiếc quạt trần năm cánh quay với tốc độ 45 vòng trong một phút. Chọn chiều quay của quạt là chiều thuận. Sau 3 giây, quạt quay được một góc có số đo bao nhiêu radian?

Lời giải:

Tốc độ góc của quạt trần là: 45.2π60=3π2(rad/s).

Sau 3 giây, quạt quay được một góc có số đo là: 3π2.3=9π2rad.

Bài 8 trang 42 Toán 11 Tập 1Cho cosα = 13 và π2<α<0. Tính:

a) sinα;

b) sin2α;

c) cosα+π3.

Lời giải:

a) sinα = Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 9)

b) sin2α = 2sinα.cosα = 2.13223=429.

c) Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 10)

Bài 9 trang 42 Toán 11 Tập 1Chứng minh đẳng thức lượng giác:

a) sin(α + β)sin(α – β) = sin2α – sin2β;

b) cos4α – cos4απ2 = cos2α.

Lời giải:

a) sin(α + β)sin(α – β) = sin2α – sin2β

Ta có: sin(α + β)sin(α – β) =

Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 11)

Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 1 (ảnh 12)

b) Ta có: cos4α – cos4απ2 = cos4α – sin4α = (cos2α – sin2α)(cos2α + sin2α)

= cos2α – sin2α = cos2α.

Đánh giá

0

0 đánh giá