Toán 8 (Kết nối tri thức) Bài 3: Phép cộng và phép trừ đa thức

603

Toptailieu biên soạn và giới thiệu lời Giải Toán 8 Bài 3: Phép cộng và phép trừ đa thức hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi sgk Toán 8 Bài 3 từ đó học tốt môn Toán 8.

Toán 8 (Kết nối tri thức) Bài 3: Phép cộng và phép trừ đa thức

Giải Toán 8 trang 15 Tập 1

Mở đầu trang 15 Toán 8 Tập 1: Trong buổi sinh hoạt câu lạc bộ Toán học của lớp, hai bạn tính giá trị của hai biểu thức P = 2x2y – xy2 + 22 và Q = xy2 – 2x2y + 23 tại những giá trị cho trước của x và y. Kết quả được ghi lại như bảng bên.

Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức (ảnh 1)

Ban giám khảo cho biết có một cột cho kết quả sai. Theo em, làm thế nào để có thể nhanh chóng phát hiện cột có kết quả sai ấy?

Lời giải:

Sau bài học này ta giải quyết được bài toán như sau:

Ta có P + Q = (2x2y – xy2 + 22) + (xy2 – 2x2y + 23)

= 2x2y – xy2 + 22 + xy2 – 2x2y + 23

= (2x2y – 2x2y) + (xy2 – xy2) + 23 + 22 = 45.

Ta xét từng cột trong bảng trên, ta có:

• Cột thứ nhất: P + Q = 19 + 26 = 45;

• Cột thứ hai: P + Q = 25 + 20 = 45;

• Cột thứ ba: P + Q = 38 + 17 = 55;

• Cột thứ tư: P + Q = 22 + 23 = 45.

Vì tổng P + Q luôn bằng 45 nên cột thứ ba có kết quả sai.

HĐ1 trang 15 Toán 8 Tập 1: Cho hai đa thức A = 5x2y + 5x – 3 và B = xy – 4x2y + 5x – 1.

Thực hiện phép cộng hai đa thức A và B bằng cách tiến hành các bước sau:

• Lập tổng A + B = (5x2y + 5x – 3) + (xy – 4x2y + 5x – 1).

• Bỏ dấu ngoặc và thu gọn đa thức nhận được.

Lời giải:

Thực hiện phép cộng hai đa thức A và B theo các bước sau:

• Lập tổng A + B = (5x2y + 5x – 3) + (xy – 4x2y + 5x – 1).

• Bỏ dấu ngoặc và thu gọn đa thức nhận được.

A + B = 5x2y + 5x – 3 + xy – 4x2y + 5x – 1

= (5x2y – 4x2y) + xy + (5x + 5x) – (3 + 1)

= x2y + xy + 10x – 4.

HĐ2 trang 15 Toán 8 Tập 1: Cho hai đa thức A = 5x2y + 5x – 3 và B = xy – 4x2y + 5x – 1.

Thực hiện phép trừ hai đa thức A và B bằng cách lập hiệu

A – B = (5x2y + 5x – 3) – (xy – 4x2y + 5x – 1), bỏ dấu ngoặc rồi thu gọn đa thức nhận được.

Lời giải:

Ta có A – B = (5x2y + 5x – 3) – (xy – 4x2y + 5x – 1)

= 5x2y + 5x – 3 – xy + 4x2y – 5x + 1

= (5x2y + 4x2y) – xy + (5x – 5x) + (1 – 3)

= 9x2y – xy – 2.

Giải Toán 8 trang 16 Tập 1

Luyện tập 2 trang 16 Toán 8 Tập 1: Rút gọn và tính giá trị của biểu thức sau tại x = 2 và y = −1.

K = (x2y + 2xy3) – (7,5x3y2 – x3) + (3xy3 – x2y + 7,5x3y2).

Lời giải:

K = (x2y + 2xy3) – (7,5x3y2 – x3) + (3xy3 – x2y + 7,5x3y2)

= x2y + 2xy3 – 7,5x3y2 + x3 + 3xy3 – x2y + 7,5x3y2

= (x2y – x2y) + (2xy3 + 3xy3) + (7,5x3y– 7,5x3y2) + x3

= 5xy3 + x3.

Vận dụng trang 16 Toán 8 Tập 1: Trở lại tình huống mở đầu, hãy trình bày ý kiến của em.

Trong buổi sinh hoạt câu lạc bộ Toán học của lớp, hai bạn tính giá trị của hai biểu thức P = 2x2y – xy2 + 22 và Q = xy2 – 2x2y + 23 tại những giá trị cho trước của x và y. Kết quả được ghi lại như bảng bên.

Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức (ảnh 2)

Ban giám khảo cho biết có một cột cho kết quả sai. Theo em, làm thế nào để có thể nhanh chóng phát hiện cột có kết quả sai ấy?

Lời giải:

Ta có P + Q = (2x2y – xy2 + 22) + (xy2 – 2x2y + 23)

= 2x2y – xy2 + 22 + xy2 – 2x2y + 23

= (2x2y – 2x2y) + (xy2 – xy2) + 23 + 22 = 45.

Ta xét từng cột trong bảng trên, ta có:

• Cột thứ nhất: P + Q = 19 + 26 = 45;

• Cột thứ hai: P + Q = 25 + 20 = 45;

• Cột thứ ba: P + Q = 38 + 17 = 55;

• Cột thứ tư: P + Q = 22 + 23 = 45.

Vì tổng P + Q luôn bằng 45 nên cột thứ ba có kết quả sai.

Bài 1.14 trang 16 Toán 8 Tập 1: Tính tổng và hiệu của hai đa thức P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6.

Lời giải:

Ta có:

• P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)

= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6

= x2y + (x3 + x3) + (xy2 – xy2) – xy + (3 – 6)

= x2y + 2x3 – xy – 3.

• P – Q = (x2y + x3 – xy2 + 3) – (x3 + xy2 – xy – 6)

= x2y + x3 – xy2 + 3 – x– xy+ xy + 6

= x2y + (x3 – x3) – (xy2 + xy2) + xy + (6 + 3)

= x2y – 2xy2 + xy + 9.

Vậy P + Q = x2y + 2x3 – xy – 3; P – Q = x2y – 2xy2 + xy + 9.

Bài 1.15 trang 16 Toán 8 Tập 1: Rút gọn biểu thức:

a) (x – y) + (y – z) + (z – x);

b) (2x – 3y) + (2y – 3z) + (2z – 3x).

Lời giải:

a) (x – y) + (y – z) + (z – x)

= x – y + y – z + z – x

= (x – x) + (y – y) + (z – z)

= 0 + 0 + 0 = 0

b) (2x – 3y) + (2y – 3z) + (2z – 3x)

= (2x – 3x) + (2y – 3y) + (2z – 3z)

= –x – y – z.

Bài 1.16 trang 16 Toán 8 Tập 1: Tìm đa thức M biết M – 5x2 + xyz = xy + 2x2 – 3xyz + 5.

Lời giải:

Ta có M – 5x2 + xyz = xy + 2x2 – 3xyz + 5

Suy ra: M = xy + 2x2 – 3xyz + 5 + 5x2 – xyz

= (5x+ 2x2) – (3xyz + xyz) + xy + 5

= 7x2 – 4xyz + xy + 5.

Vậy M = 7x2 – 4xyz + xy + 5.

Bài 1.17 trang 16 Toán 8 Tập 1: Cho hai đa thức A = 2x2y + 3xyz – 2x + 5 và B = 3xyz – 2x2y + x – 4.

a) Tìm các đa thức A + B và A – B;

b) Tính giá trị của các đa thức A và A + B tại x = 0,5; y = −2 và z = 1.

Lời giải:

a) Ta có:

• A + B = (2x2y + 3xyz – 2x + 5) + (3xyz – 2x2y + x – 4)

= 2x2y + 3xyz – 2x + 5 + 3xyz – 2x2y + x – 4

= (2x2y – 2x2y) + (3xyz + 3xyz) + (x – 2x) + (5 – 4)

= 6xyz – x + 1.

• A – B = (2x2y + 3xyz – 2x + 5) – (3xyz – 2x2y + x – 4)

= 2x2y + 3xyz – 2x + 5 – 3xyz + 2x2y – x + 4

= (2x2y + 2x2y) + (3xyz – 3xyz) – (2x + x) + (5 + 4)

= 4x2y – 3x + 9.

Vậy A + B = 6xyz – x + 1; A – B = 4x2y – 3x + 9.

b) Thay x = 0,5; y = −2 và z = 1 vào biểu thức A, ta được:

A = 2 . 0,52 . (−2) + 3 . 0,5 . (−2) . 1 – 2 . 0,5 + 5

= 2 . 0,25 . (−2) + 1,5 . (−2) – 1 + 5

= 0,5 . (−2) – 3 + 4 = −1 – 3 + 4 = 0.

Thay x = 0,5; y = −2 và z = 1 vào biểu thức A + B, ta được:

A + B = 6 . 0,5 . (−2) . 1 – 0,5 + 1

= 3 . (−2) – 0,5 + 1 = −6 + 0,5 = −5,5.

Vậy tại x = 0,5; y = −2 và z = 1 thì A = 0 và A + B = −5,5.

Xem thêm các bài giải Toán 8 Kết nối tri thức hay, chi tiết khác:

Bài 2: Đa thức

Luyện tập chung trang 17

Bài 4: Phép nhân đa thức

Bài 5: Phép chia đa thức cho đơn thức

Luyện tập chung trang 25

Đánh giá

0

0 đánh giá