Với giải SGK Toán 11 Kết nối tri thức trang 87 chi tiết trong Bài 12: Đường thẳng và mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 87 Tập 1 (Kết nối tri thức)
Lời giải:
Mặt phẳng (ABC) chứa đường thẳng AB song song với mặt phẳng (Q) nên mặt phẳng (ABC) cắt mặt phẳng (Q) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc BC) thì EF là giao tuyến của (Q) và (ABC).
Mặt phẳng (ACD) chứa đường thẳng AD song song với mặt phẳng (Q) nên mặt phẳng (ACD) cắt mặt phẳng (Q) theo giao tuyến song song với AD. Vẽ EN // AD (N thuộc CD) thì EN là giao tuyến của (Q) và (ACD). Khi đó FN là giao tuyến của (Q) và (BCD).
Bài tập
a) Nếu a và (P) có điểm chung thì a không song song với (P).
b) Nếu a và (P) có điểm chung thì a và (P) cắt nhau.
c) Nếu a song song với b và b nằm trong (P) thì a song song với (P).
d) Nếu a và b song song với (P) thì a song song với b.
Lời giải:
a) Mệnh đề a) là mệnh đề đúng vì nếu a và (P) có điểm chung thì a cắt (P) hoặc a nằm trong (P) nên a không song song với (P).
b) Mệnh đề b) là mệnh đề sai vì nếu a và (P) có điểm chung thì a và (P) cắt nhau hoặc a nằm trong (P).
c) Mệnh đề c) là mệnh đề sai vì a có thể nằm trong (P).
d) Mệnh đề d) là mệnh đề sai vì a và b có thể cắt nhau.
a) Đường thẳng AM có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
b) Đường thẳng MN có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
Lời giải:
a) Vì M là trung điểm của cạnh AC nên đường thẳng AM chứa điểm C.
Lại có điểm C thuộc mặt phẳng (BCD) và điểm A không thuộc mặt phẳng (BCD) (do bốn điểm A, B, C, D không đồng phẳng). Do đó, đường thẳng AM cắt mặt phẳng (BCD) tại điểm C. Vậy đường thẳng AM không song song với mặt phẳng (BCD).
b) Vì M, N lần lượt là trung điểm của các cạnh AC, AD nên MN là đường trung bình của tam giác ACD, suy ra MN // CD.
Lại có đường thẳng CD nằm trong mặt phẳng (BCD) và đường thẳng MN không nằm trong mặt phẳng (BCD).
Vậy đường thẳng MN song song với mặt phẳng (BCD).
Lời giải:
Vì M, N lần lượt là trung điểm của hai cạnh BC, CD nên MN là đường trung bình của tam giác BCD, suy ra MN // BD.
Mà đường thẳng MN nằm trong mặt phẳng (AMN).
Do đó, đường thẳng BD song song với mặt phẳng (AMN).
Lời giải:
+) Mặt phẳng (SAB) chứa đường thẳng AB song song với mặt phẳng (P) nên mặt phẳng (SAB) cắt mặt phẳng (P) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc SB) thì EF là giao tuyến của (P) và (SAB).
+) Mặt phẳng (SAD) chứa đường thẳng AD song song với mặt phẳng (P) nên mặt phẳng (SAD) cắt mặt phẳng (P) theo giao tuyến song song với AD. Vẽ EG // AD (G thuộc SD) thì EG là giao tuyến của (P) và (SAD).
+) Trong mặt phẳng (SCD), qua G vẽ đường thẳng song song với CD cắt SC tại H.
Ta có: GH // CD và CD // AB nên GH // AB, do đó GH nằm trong mặt phẳng (P).
Vì G thuộc SD nên G thuộc mặt phẳng (SCD) và H thuộc SC nên H thuộc mặt phẳng (SCD), do đó GH nằm trong mặt phẳng (SCD).
Vậy GH là giao tuyến của (P) và (SCD).
+) Nối H với F, ta có H thuộc SC nên H thuộc mặt phẳng (SBC). Vì F thuộc SB nên F thuộc mặt phẳng (SBC). Do đó, HF nằm trong mặt phẳng (SBC).
Lại có H và F đều thuộc (P) nên HF nằm trong mặt phẳng (P).
Vậy HF là giao tuyến của (P) và (SBC).
+) Ta có: EF // AB và GH // AB nên EF // GH, do vậy tứ giác EFHG là hình thang.
Lời giải:
Cánh cửa có dạng hình chữ nhật nên mép trên cửa song song với mép dưới cửa. Mà mép dưới của cửa luôn tạo với mặt sàn một đường thẳng, do đó mép trên của cửa luôn song song với mặt sàn nhà.
Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải sách giáo khoa Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 10: Đường thẳng và mặt phẳng trong không gian
Bài 11: Hai đường thẳng song song
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.