Lý thuyết Công thức lượng giác (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

678

Toptailieu.vn xin giới thiệu Lý thuyết Công thức lượng giác (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Công thức lượng giác (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

Bài giải Bài 2: Công thức lượng giác  

A. Lý thuyết Công thức lượng giác

1. Công thức cộng

 Lý thuyết Toán 11 (Kết nối tri thức) Bài 1: Giá trị lượng giác của góc lượng giác (ảnh 1)

 

2. Công thức nhân đôi

sin2a=2sinacosacos2a=cos2asin2a=2cos2a1=12sin2atan2a=2tana1tan2a

Suy ra, công thức hạ bậc:

 sin2a=1cos2a2,cos2a=1+cos2a2

3. Công thức biến đổi tích thành tổng

cosacosb=12[cos(a+b)+cos(ab)]sinasinb=12[cos(ab)cos(a+b)]sinacosb=12[sin(a+b)+sin(ab)]

4. Công thức biến đổi tổng thành tích

cosa+cosb=2cosa+b2cosab2cosacosb=2sina+b2sinab2sina+sinb=2sina+b2cosab2sinasinb=2cosa+b2sinab2

Lý thuyết Công thức lượng giác – Toán 11 Kết nối tri thức (ảnh 1)

 
 
 
 
 
 
 
 
 
 
 
 

 

B. Bài tập Công thức lượng giác

Bài 1. Tính

a) cos(–15°) + cos255°;

b) sin13π24sin5π24.

Hướng dẫn giải

a) Ta có:

cos(-15o) + cos255o = 2.cos15°+255°2.cos15°255°2

= 2.cos120o.cos(135o) = 2Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy cos(–15°) + cos255° = 22.

b) Ta có:

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy sin13π24sin5π24=1+24.

Bài 2. Tính

a) sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác biết sin a = 34 và 0 < a < π2;

b) cos3π8.cosπ8 + sin3π8.sinπ8.

Hướng dẫn giải

a) Vì 0<a<π2 nên cosa > 0.

Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=716

⇒ cosa = 74.

Vậy sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=sinacosπ3cosasinπ3=34.1274.32=3218 .

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Suy ra: cos3π8.cosπ8+sin3π8.sinπ8=24+24=22.

Bài 3. Tính sin2a và tan2a biết cos a = 14 và 3π2<a<2π.

Hướng dẫn giải

Vì 3π2<a<2πnên sina < 0.

Ta có:

sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 - Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác = 1516

⇒ sina = 154.

Ta có: sin2a = 2sina cosa = 2.Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác.14 = -158

Ta có: tana = sinacosa=15

tan2a=2tana1tan2a=Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác==21514=157.

Xem thêm Lý thuyết các bài  Toán 11 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 1: Giá trị lượng giác của góc lượng giác

Lý thuyết Bài 3: Hàm số lượng giác

Lý thuyết Bài 4: Phương trình lượng giác cơ bản

Lý thuyết Bài 5: Dãy số

Lý thuyết Bài 6: Cấp số cộng

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá