Toptailieu.vn xin giới thiệu Lý thuyết Công thức lượng giác (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:
Lý thuyết Công thức lượng giác (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11
Bài giải Bài 2: Công thức lượng giác
A. Lý thuyết Công thức lượng giác
1. Công thức cộng
2. Công thức nhân đôi
Suy ra, công thức hạ bậc:
3. Công thức biến đổi tích thành tổng
4. Công thức biến đổi tổng thành tích
B. Bài tập Công thức lượng giác
Bài 1. Tính
a) cos(–15°) + cos255°;
b) sinsin.
Hướng dẫn giải
a) Ta có:
cos(-15o) + cos255o = 2.cos.cos
= 2.cos120o.cos(135o) = 2
Vậy cos(–15°) + cos255° = .
b) Ta có:
Vậy .
Bài 2. Tính
a) sin biết sin a = và 0 < a < ;
b) cos.cos + sin.sin.
Hướng dẫn giải
a) Vì 0<a< nên cosa > 0.
Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-=
⇒ cosa = .
Vậy sin .
Suy ra: .
Bài 3. Tính sin2a và tan2a biết cos a = và <a<2.
Hướng dẫn giải
Vì <a<2nên sina < 0.
Ta có:
sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 - =
⇒ sina = .
Ta có: sin2a = 2sina cosa = 2.. =
Ta có: tana =
⇒==.
Xem thêm Lý thuyết các bài Toán 11 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 1: Giá trị lượng giác của góc lượng giác
Lý thuyết Bài 3: Hàm số lượng giác
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.