Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó

240

Với giải Bài 4 trang 14 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài 2: Phép tịnh tiến giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó

Bài 4 trang 14 Chuyên đề Toán 11: Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.

Lời giải:

Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 2: Phép tịnh tiến (ảnh 10)

Kẻ đường kính BB’.

Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).

Suy ra B'C là vectơ không đổi.

Ta có BCB'^=90° (góc nội tiếp chắn nửa đường tròn (O)).

Suy ra BC ⊥ B’C.

Mà AH ⊥ BC (do H là trực tâm của ∆ABC).

Do đó AH // B’C (1)

Chứng minh tương tự, ta được AB’ // CH (2)

Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.

Suy ra AH = B’C.

Mà AH // B’C (chứng minh trên).

Vì vậy AH=B'C.

Do đó H=TB'CA.

Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua TB'C.

Đánh giá

0

0 đánh giá