Phương pháp giải Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây (50 bài tập minh họa)

230

Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây (50 bài tập minh họa) hay, chi tiết nhất, từ cơ bản đến nâng cao giúp học sinh nắm vững kiến thức về hỗn số, từ đó học tốt môn Toán 9.

Nội dung bài viết

Phương pháp giải Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây (50 bài tập minh họa)

I. Lý thuyết

Cho đường tròn (O), hai dây AB, DC của đường tròn.

+ Nếu dây AB = CD thì khoảng cách từ O đến AB bằng khoảng cách từ O đến CD.

+ Nếu khoảng cách từ O đến AB bằng khoảng cách từ O đến CD thì dây AB = CD.

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết hay nhất - Toán lớp 9  (ảnh 1)

Xét hình vẽ trên:

 Nếu AB = CD thì OE = OF

 Nếu OE = OF thì AB = CD

- Trong hai dây của một đường tròn

+ Dây nào có độ dài lớn hơn thì dây đó gần tâm hơn.

+ Dây nào gần tâm hơn thì dây đó có độ dài lớn hơn.

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết hay nhất - Toán lớp 9  (ảnh 1)

Xét hình vẽ:

Nếu AB > CD thì OE < OF

 

Nếu OE < OF thì AB > CD

II. Ví dụ

Ví dụ 1: Trong các khẳng định sau đây, câu nào đúng câu nào sai:

a) Hai dây có độ dài bằng nhau thì khoảng cách từ tâm đến mỗi dây đó là bằng nhau.

b) Dây AB lớn hơn dây CD thì khoảng cách từ tâm đến dây AB lớn hơn khoảng cách từ tâm đến dây CD.

c) AB, CD là hai dây của đường tròn, khoảng cách từ tâm đến AB và CD lần lượt là 4cm và 5cm nên dây AB lớn hơn dây CD.

Lời giải:

a) đúng vì theo tính chất hai dây bằng nhau.

b) sai vì dây AB lớn hơn dây CD nên dây AB gần tâm hơn dây CD do đó khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD.

c) đúng vì khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD nên dây AB lớn hơn dây CD.

Ví dụ 2: Cho đường tròn (O) đường kính AB và dây CD, vẽ hai dây AD và BC song song với nhau. Chứng minh:

a) AC = BD;

b) CD là đường kính của (O).

Lời giải:

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết hay nhất - Toán lớp 9  (ảnh 1)

a) Gọi E là trung điểm của AD; G là trung điểm của BC

rightwards double arrow open curly brackets table attributes columnalign left end attributes row cell O text ​ end text E perpendicular A D end cell row cell O G perpendicular B C end cell end table close(tính chất)

Mà AD // BC nên O, E, G thẳng hàng

Xét capital delta A O E và capital delta B O G  có

OA = OB  (bán kính)

stack A O text ​ end text E with hat on top equals stack B O G with hat on top(hai góc đối đỉnh)

 

Do đó capital delta A O E = capital delta B O G (cạnh huyền – góc nhọn)

rightwards double arrowAE = BG mà E là trung điểm của AD, G là trung điểm của BC

rightwards double arrowAD = BC.

Xét tứ giác ADBC có:

AD = BC (chứng minh trên)

AD // BC (giả thuyết)

Do đó tứ giác ADBC là hình bình hành

rightwards double arrowAC = BC (tính chất).

b) Vì ADBC là hình bình hành nên hai đường chéo B và CD cắt nhau tại trung điểm mỗi đường.

Mà O là trung điểm AB nên O cũng là trung điểm của CD

rightwards double arrowO, C, D thẳng hàng

rightwards double arrowCD là đường kính của đường tròn (O).

Đánh giá

0

0 đánh giá