Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A, D và E

169

Với Giải Câu 8 trang 68 VTH Toán 8 Tập 1 lớp 8 trong Bài tập cuối chương 3 Vở thực hành Toán 8 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong Vở thực hành Toán 8.

Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A, D và E

Bài 8 trang 68 vở thực hành Toán 8 Tập 1: Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A, D và E lần lượt là trung điểm của AB, AC. Lấy M là điểm trên DH sao cho MD = DH. Chứng minh rằng:

a) Tứ giác ADHE là hình thoi.

b) Tứ giác AHBM là hình chữ nhật.

c) Tứ giác ACHM là hình bình hành.

d) Ba đường thẳng MC, DE, AH đồng quy.

Lời giải:

 (ảnh 1)

(H.3.47). a) Ta có AE = EC, CH = HB  HE là đường trung bình của ∆CAB.

 HE // AC, HE = 12AC = AD.

 Tứ giác ADHE là hình bình hành.

∆ABC cân tại A nên AB = AC.

 AE = 12AC = 12AB = AD.

Vậy hình bình hành ADHE có hai cạnh kề nhau bằng nhau nên là hình thoi.

b) Ta có MD = DH, DA = AB nên tứ giác AHBM có hai đường chéo AB và MH cắt nhau tại trung điểm mỗi đường nên là hình bình hành, hơn nữa AHC^=90°, suy ra AHBM là hình chữ nhật.

c) Tứ giác AHBM là hình chữ nhật nên AM // BH, AM = BH.

∆ABC cân tại A, AH  BC nên BH = CH.

Tứ giác ACHM có AM // CH, AM = CH nên là hình bình hành.

d) Tứ giác ACHM là hình bình hành nên MC, AH cắt nhau tại trung điểm mỗi đường. Tứ giác ADHE là hình thoi nên AH, DE cắt nhau tại trung điểm mỗi đường.

Vậy MC, DE, AH cắt nhau tại cùng một điểm nên chúng đồng quy.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá