Cho hình thang cân có độ dài hai đáy lần lượt là 10 cm và 4 cm, độ dài cạnh bên là 5 cm

280

Với Giải Bài 4 trang 72 sách bài tập Toán 8 Tập 1 trong Bài tập cuối chương 3 Sách bài tập Toán lớp 8 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 8.

Cho hình thang cân có độ dài hai đáy lần lượt là 10 cm và 4 cm, độ dài cạnh bên là 5 cm

Câu 4 trang 72 sách bài tập Toán 8 Tập 1: Cho hình thang cân có độ dài hai đáy lần lượt là 10 cm và 4 cm, độ dài cạnh bên là 5 cm. Hình thang đó có chiều cao là

A. 2 cm.

B. 3 cm.

C. 4 cm.

D. 6 cm.

Lời giải:

Đáp án đúng là: C

Giả sử ABCD hình thang cân (AB // CD) có AB = 4 cm, CD = 10 cm và AD = BC = 5 cm (hình vẽ).

 (ảnh 12)

Kẻ hai đường cao AH và BK.

Xét ∆ADH vuông tại H và ∆BCK vuông tại K có:

AD = BC (hai cạnh bên bằng nhau của hình thang cân ABCD)

ADH^=BCK^ (do ABCD là hình thang cân)

Suy ra ∆ADH = ∆BCK (cạnh huyền – góc nhọn)

Do đó DH = CK (hai cạnh tương ứng)

Ta có: ABKH là hình chữ nhật nên AB = HK = 4 cm.

Mà DH + HK + CK = DC, suy ra DH=CK=CD-HK2=10-42=3 (cm).

Áp dụng định lý Pythagore trong ∆ADH vuông tại H ta có:

AD2 = AH2 + DH2, suy ra AH2 = AD2 ‒ DH2 = 52 ‒ 32 = 16

Suy ra AH=16=4 (cm).

Đánh giá

0

0 đánh giá