SBT Toán 8 (Cánh diều) Bài 3: Hằng đẳng thức đáng nhớ

335

Toptailieu biên soạn và giới thiệu giải Sách bài tập Toán 8 Bài 3: Hằng đẳng thức đáng nhớ sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 8 Bài 3.

SBT Toán 8 (Cánh diều) Bài 3: Hằng đẳng thức đáng nhớ

Bài tập trang 15 SBT Toán 8 Tập 1

Bài 15 trang 14 SBT Toán 8 Tập 1: Viết mỗi biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a) 9x2 +12x + 4;

b) 121y2 ‒ 110y + 25;

c) 36x2 ‒ 96xy + 64y2.

Lời giải:

a) 9x2 + 12x + 4 = (3x)2 + 2.3x.2 + 22 = (3x + 2)2.

b) 121y2 ‒ 110y + 25 = (11y)2 ‒ 2.11y.2 + 52 = (11y ‒ 5)2.

c) 36x2 ‒ 96xy + 64y2 = (6x)2 ‒ 2.6x.8y + (8y)2 = (6x ‒ 8y)2.

Bài tập trang 16 SBT Toán 8 Tập 1

Bài 16 trang 15 SBT Toán 8 Tập 1: Viết mỗi biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu:

a) 8x3 + 12x2 + 6x + 1;

b) 8x3 ‒ 36x2y + 54xy2 ‒ 27y3.

Lời giải:

a) 8x3 + 12x2 + 6x + 1

= (2x)3 + 3.(2x)2.1 + 3.2x.12 + 13

= (2x + 1)3.

b) 8x3 ‒ 36x2y + 54xy2 ‒ 27y3

= (2x)3 ‒ 3.(2x)2.3y + 3.2x.(3y)3 ‒ (3y)3

= (2x ‒ 3y)3.

Bài 17 trang 15 SBT Toán 8 Tập 1: Rút gọn rồi tính giá trị của mỗi biểu thức:

a) A = (5x + 4)(5x ‒ 4) ‒ (5x + 1)2 + 123 tại x = ‒1;

b) B = (2x + 1)(4x2 ‒ 2x + 1) ‒ 2x(4x2 ‒ 5) ‒ 11 tại x=14;

c) C = (4x + y)3 ‒ (4x ‒ y)3 ‒ 2y(y2 +48x2) ‒ 22x + 24ytại x=-122;y=-14.

Lời giải:

a) A = (5x + 4)(5x ‒ 4) ‒ (5x + 1)2 + 123

= (5x)2 – 42 – [(5x)2 + 2.5x.1 + 12] + 123

= 25x2 ‒ 16 ‒ 25x2 ‒ 10x ‒ 1 + 123

= (25x2 ‒ 25x2) – 10x + (‒ 16 ‒ 1 + 123)

= ‒10x + 106

Thay x=-1 vào A, ta được: A = ‒10. (–1) + 106= 10 + 106 = 116.

Vậy giá trị của Atại x=-1 là A = 116.

b) B = (2x + 1)(4x2 ‒ 2x + 1) ‒ 2x(4x2 ‒ 5) ‒ 11

= 8x3 ‒ 4x2 +2x + 4x2 ‒ 2x + 1 ‒ 8x3 +10x ‒ 11

= 10x ‒ 10.

Thay x=14 vào B, ta được: B=10.14-10=-152.

Vậy giá trị của Btại x=14 B=-152.

c) C = (4x + y)3 ‒ (4x ‒ y)3 ‒ 2y(y2 +48x2) ‒ 22x + 24y

= (4x)3 + 3.(4x)2.y + 3.4x.y2 + y3 ‒ [(4x)3 – 3.(4x)2.y + 3.4x.y2 – y3] ‒ 2y3 ‒ 96x2y ‒ 22x + 24y

= (4x)3 + 3.(4x)2.y + 3.4x.y2 + y3 – (4x)3 + 3.(4x)2.y – 3.4x.y2 + y3 ‒ 2y3 ‒ 96x2y ‒ 22x + 24y

= 3.(4x)2.y + y3+ 3.(4x)2.y + y3‒ 2y3 ‒ 96x2y ‒ 22x + 24y

= (48x2y + 48x2y ‒ 96x2y) + (y3+ y3‒ 2y3) ‒ 22x + 24y

= ‒ 22x + 24y.

Thay x=-122;y=-14 vào C, ta được: C=-22.-122+24.-14=-5

Vậy giá trị của C tại x=-122;y=-14là C = –5.

Bài 18 trang 15 SBT Toán 8 Tập 1: Tính nhanh:

a) 2022;

b) 299.301;

c) 953 + 15.952 + 3.95.25 + 53;

d) 9(102 + 10 + 1) + 100(982 + 392 + 22).

Lời giải:

a) 2022 = (200 + 2)2

= 2002 + 2.200.2 + 22

= 40000 + 800 + 4

= 40804.

b) 299.301 = (300 ‒ 1)(300 + 1)

= 3002 ‒ 1 = 90000 ‒ 1

= 89999.

c) 953 + 15.952 + 3.95.25 + 53

= 953 + 3.952.5 + 3.95.52 + 53

= (95 + 5)3

= 1003 = 1000000.

d) 9(102 + 10 + 1) + 100(982 + 392 + 22)

= (10 ‒ 1)(102 + 10 + 1) + 100(982 + 2.98.2 + 22)

= 103 ‒ 1 + 100(98 + 2)2

= 1000 ‒ 1 + 100.1002

= 999 + 1000000

= 1000999.

Bài 19 trang 15 SBT Toán 8 Tập 1: Không tính giá trị của biểu thức, hãy so sánh:

a) M = 2021.2023và N = 20222;

b) P = 3(22 + 1)(24 + 1)(28 + 1) + 2và Q = (22)8.

Lời giải:

a) Ta có:

M = 2021.2023 = (2022 ‒ 1)(2022 + 1) = 20222 ‒ 1

Ta thấy 20222 ‒ 1 < 20222 nên M < N.

b) Ta có:

P = 3(22 + 1)(24 + 1)(28 + 1) + 2

= (22 ‒ 1)(22 + 1)( 24 + 1)(28 + 1) + 2

= (24 ‒ 1)(24 + 1)(28 + 1) + 2

= (28 ‒ 1)(28 + 1) + 2

= 216 ‒ 1 + 2

= 216 + 1

Q = (22)8 = 216

Ta thấy: 216 + 1 > 216

Vậy P > Q.

Bài 20 trang 15 SBT Toán 8 Tập 1: Tìm giá trị nhỏ nhất của mỗi biểu thức sau:

a) A = 4x2 ‒ 4x + 23;

b) B = 25x2 + y2 + 10x ‒ 4y + 2.

Lời giải:

a) Ta có: A = 4x2 ‒ 4x + 23 = (4x2 ‒ 4x + 1) + 22 = (2x ‒ 1)2 + 22.

Mà (2x ‒ 1)2 ≥ 0 với mọi x

⇒(2x ‒ 1)2 + 22 ≥ 22 với mọi x.

Vậy giá trị nhỏ nhất của A là 22 khi 2x ‒ 1 = 0 hay x=12.

b) Ta có: B = 25x2 + y2 + 10x ‒ 4y + 2

= (25x2 + 10x + 1) + (y2 ‒ 4y + 4) ‒ 3

= (5x + 1)2 + (y ‒ 2)2 ‒ 3.

Mà (5x + 1)2 ≥ 0; (y ‒ 2)2 ≥ 0 với mọi x và y

⇒ (5x + 1)2 + (y ‒ 2)2 ‒ 3 ≥ ‒3 với mọi x và y.

Vậy giá trị nhỏ nhất của B là –3 khi và chỉ khi Tìm giá trị nhỏ nhất của mỗi biểu thức sau: a) A = 4x^2 ‒ 4x + 23

Bài 21 trang 15 SBT Toán 8 Tập 1: Tìm giá trị lớn nhất của mỗi biểu thức sau:

a) C = ‒(5x ‒ 4)2 + 2023;

b) D = ‒36x2 + 12xy ‒ y2 + 7.

Lời giải:

a) Do(5x ‒ 4)2 ≥ 0 với mọi x

Suy ra ‒(5x ‒ 4)2 ≤ 0 với mọi x nên ‒(5x ‒ 4)2 + 2023 ≤ 2023 với mọi x.

Vậy giá trị lớn nhất của C là 2023 khi 5x ‒ 4 = 0 hay x=45.

b) Ta có: D = ‒36x2 + 12xy ‒ y2 + 7

= ‒(36x2 ‒ 12xy + y2) + 7 = ‒(6x ‒ y)2 + 7

Mà (6x ‒ y)2 ≥ 0 với mọi x, y

Suy ra ‒(6x ‒ y)2 ≤ 0 với mọi x và y

Do đó‒(6x ‒ y)2 + 7 ≤ 7với mọi xvà y.

Vậy giá trị lớn nhất của Dlà 7 khi 6x ‒ y =0.

Xem thêm các bài giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Bài 2: Các phép tính với đa thức nhiều biến

Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

Bài tập cuối chương 1

Bài 1: Phân thức đại số

Bài 2: Phép cộng, phép trừ phân thức đại số

Đánh giá

0

0 đánh giá