Toptailieu.vn biên soạn và giới thiệu lời giải SBT Toán 8 (Cánh diều) Bài 1: Phân thức đại số hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi vở bài tập Toán 8 Bài 1 từ đó học tốt môn Toán 8.
Nội dung bài viết
SBT Toán 8 (Cánh diều) Bài 1: Phân thức đại số
Bài 1 trang 33 SBT Toán 8 Tập 1: Viết điều kiện xác định của mỗi phân thức sau:
Lời giải:
a) Điều kiện xác định của phân thức 32x(5−x) là: 2x(5−x)≠0
b) Điều kiện xác định của phân thức 4xx2−4 là: x2−4≠0
c) Điều kiện xác định của phân thức xy2+2xy là: y2+2xy≠0
d) Điều kiện xác định của phân thức 6,4y0,4x2+0,4x là: 0,4x2+0,4x≠0
Lời giải:
a) Ta có: x2y3.2=2x2y3 và 2x2y2.y=2x2y3 nên x2y3.2=2x2y2.y
Vậy x2y32x2y2=y2
b) Ta có:
(x2−x−2)(x−1)=x3−x2−2x−x2+x+2=x3−2x2−x+2
và
(x+1)(x2−3x+2)=x3−3x2+2x+x2−3x+2=x3−2x2−x+2
Vậy x2−x−2x+1=x2−3x+2x−1
c) Ta có:
(x2−3x+9)(x+3)=x3−3x2+9x+3x2−9x+27=x3+27
(x3+27).1=x3+27
Vậy x2−3x+9x3+27=1x+3.
Bài 3 trang 33 SBT Toán 8 Tập 1: Mỗi cặp phân thức sau có bằng nhau không? Vì sao?
Lời giải:
a) Ta có: x.5=5x và (5x+5).1=5x+5
Do x.5≠(5x+5).1 nên hai phân thức x5x+5 và 15 không bằng nhau.
b) Ta có: −x.(x−5)2=−x(x−5)2 và (x−5).[−x(x−5)]=−x(x−5)2
nên −x.(x−5)2=(x−5).[−x(x−5)]
Vậy −xx−5=−x(x−5)(x−5)2
c) Ta có: −5.(x+y)=−5(x+y) và (−x−y).5=−5(x+y)
nên −5.(x+y)=(−x−y).5
Vậy −5−x−y=5x+y
d) Ta có: −x.(3−x)2=−x(x−3)2 và (x−3)2.x=x(x−3)2
Do −x(x−3)2≠x(x−3)2 nên khi x≠0 và x≠3 thì hai phân thức −x(x−3)2 và x(3−x)2 không bằng nhau
Bài 4 trang 33 SBT Toán 8 Tập 1: Rút gọn mỗi phân thức sau:
Lời giải:
a) Điều kiện xác định của phân thức là x≠0;y≠0
Ta có: 25x2y335x3y2=5.5x2y35.7x3x2=5y7x
b) Điều kiện xác định của phân thức là y−x≠0
Ta có: x−yy−x=−(y−x)y−x=−1
c) Điều kiện xác định của phân thức là x≠0;y≠0
Ta có: (−x)5y2x2(−y)3=(−1).x5y2(−1).x2y3=x3y
d) Điều kiện xác định của phân thức là x3−4x2+4x≠0
Ta có: x2−2xx3−4x2+4x=x(x−2)x(x2−4x+4)=x(x−2)x(x−2)2=1x−2
Bài 5 trang 33 SBT Toán 8 Tập 1: Tính giá trị của biểu thức:
b) B=−4(x−2)x220(2−x)y2 tại x=12;y=15.
d) D=5x2−10xy+5y2x2−y1 tại x=0,5;y=0,6.
Lời giải:
a) Rút gọn biểu thức: A=x5y2(xy)3=x5y2x3y3=x2y
ĐKXĐ: (xy)3≠0
Giá trị của A khi x=1;y=2 là: 122=12
b) Rút gọn biểu thức: B=−4(x−2)x220(2−x)y2=−4.−(2−x)x220.(2−x)y2=x25y2
ĐKXĐ: 20(2−x)y2≠0
Giá trị của A khi x=12;y=15 là: (12)25.(15)2=54
c) Rút gọn biểu thức: C=x2−8x+7x2−1=(x−7)(x−1)(x−1)(x+1)=x−7x+1
ĐKXĐ: x2−1≠0
Giá trị của C khi x=−7 là: (−7−7)(−7−1)=74
d) Rút gọn biểu thức:
D=5x2−10xy+5y2x2−y2=5(x2−2xy+y2)(x−y)(x+y)=5(x−y)2(x−y)(x+y)=5(x−y)(x+y)
ĐKXĐ: x2+y2≠0
Giá trị của D khi x=0,5;y=0,6 là: 5(0,5−0,6)(0,5+0,6)=−511
Bài 6 trang 34 SBT Toán 8 Tập 1: Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
Lời giải:
a) Ta có:
Chọn MTC là: 60x4y3z3.
Nhân tử phụ của ba mẫu thức 15x3y2;10x4z3;20y3z lần lượt là: 4xyz3;6y3;3x4z2
Vậy: 215x3y2=2(4xyz3)15x3y2.4xyz3=8xyz360x4y3z3
y10x4z3=y.6y310x4z3=6y460x4y3z3
x20y3z=x.3x4z220y3z.3x4z2=3x5z260x4y3z3
b) Ta có: 2x+6=2(x+3);x2−9=(x+3)(x−3)
Chọn MTC là: 2(x2−9)
Nhân tử phụ của hai mẫu thức 2x+6;x2−9 lần lượt là (x−3);2
Vậy: x2x+6=x(x−3)2(x+3)(x−3)=x2−3x2(x2−9)
4x2−9=4.22(x+3)(x−3)=82(x2−9)
c) Ta có: x3−1=(x−1)(x2+x+1)
Chọn MTC là: x3−1
Nhân tử phụ của hai mẫu thức x3−1;x2+x+1 lần lượt là: 1;(x−1)
Vậy: 2xx3−1
x−1x2+x+1=(x−1)(x−1)(x−1)(x2+x+1)=(x−1)2x3−1
d) Ta có:
1+2x+x2=(x+1)2;5x2−5=5(x2−1)=5(x−1)(x+1)
Chọn MTC là: 5(x−1)(x+1)2
Nhân tử phụ của hai mẫu thức 1+2x+x2;5x2−5 lần lượt là: 5(x−1);x+1
Vậy: x1+2x+x2=x.5.(x−1)5(x−1)(x+1)2=5x(x−1)5(x−1)(x+1)2
35x2−5=3(x+1)5(x−1)(x+1)2
Lời giải:
a) Ta có: x2−y2(x+y)(ax−ay)=(x−y)(x+y)(x+y).a(x−y)=1a
Vậy biểu thức đã cho không phụ thuộc vào giá trị của biến.
b) Ta có: (x+a)2−x22x+a=(x+a−x)(x+a+x)2x+a=a(2x+a)2x+a=a
Vậy biểu thức đã cho không phụ thuộc vào giá trị của biến.
b) Tính giá trị của phân thức đó tại x=4;y=1
Lời giải:
a) Diện tích của miếng bìa ban đầu là: x2(cm2)
Diện tích của phần bìa còn lại sau khi cắt là: x2−4y2(cm2)
Phân thức biểu thị tỉ số diện tích của miếng bìa ban đầu và phần miếng bìa còn lại sau khi bị cắt là: x2x2−4y2
b) Giá trị của phân thức x2x2−4y2 tại x=4;y=1 là: 4242−4.12=43
Xem thêm Lời giải bài tập Toán 8 sách Cánh diều hay, chi tiết khác:
Bài 2: Phép cộng, phép trừ phân thức đại số
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.