Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi E, F lần lượt là trọng tâm của các tam giác SAD, SBC

259

Với Giải Bài 4.18 trang 59 SBT Toán 11 Tập 1 trong Bài 11: Hai đường thẳng song song Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi E, F lần lượt là trọng tâm của các tam giác SAD, SBC

Bài 4.18 trang 59 SBT Toán 11 Tập 1Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi E, F lần lượt là trọng tâm của các tam giác SAD, SBC.

a) Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Chứng minh rằng EF//MN, từ đó suy ra EF//AB.

b) Xác định các giao tuyến của mặt phẳng (AEF) với các mặt của hình chóp.

c) Trong các giao tuyến tìm được ở câu b, giao tuyến nào song song với đường thẳng EF?

Lời giải:

SBT Toán 11 (Kết nối tri thức) Bài 11: Hai đường thẳng song song (ảnh 10)

a) E là trọng tâm tam giác SAD nên SE = 2EM.

F là trọng tâm tam giác SBC nên SF = 2FN.

Xét tam giác SMN, ta có tỉ số SESF=2EM2FN=EMFN nên EF//MN

M, N lần lượt là trung điểm của các cạnh AD, BC nên MN là đường trung bình hình thang ABCD. Suy ra MN//AB. Suy ra EF//AB.

b) Trong mặt phẳng (SAD), gọi P là giao điểm của AE và SD

Trong mặt phẳng (SCD), gọi Q là giao điểm của BF và SC.

Giao tuyến của AE với các mặt của hình chóp lần lượt là: AP, PQ, QB, AB.

c) Trong các giao tuyến tìm được ở câu b, có AB và PQ song song với EF.

Xét 3 mặt phẳng (APQB), (SCD) và (ABCD). Ta thấy giao tuyến AB và CD song song. Vậy giao tuyến PQ cũng sẽ song song với AB và CD. Mà AB//EF nên PQ cũng song song với EF.

Đánh giá

0

0 đánh giá