10 câu trắc nghiệm Bài tập cuối chương 5 (Cánh diều) có đáp án - Toán 10

Toptailieu.vn xin giới thiệu 410 câu trắc nghiệm Bài tập cuối chương 5 (Cánh diều) có đáp án - Toán 10 chọn lọc, hay nhất giúp học sinh lớp 10 ôn luyện kiến thức để đạt kết quả cao trong các bài thi môn Toán.

Mời các bạn đón xem:

10 câu trắc nghiệm Bài tập cuối chương 5 (Cánh diều) có đáp án - Toán 10

Câu 1. Cho 7 chữ số 0; 2; 3; 4; 5; 6 ; 7 số các số tự nhiên lẻ có 3 chữ số lập thành từ các chữ số trên

A. 60;

B. 210;

C. 126;

D. 180.

Đáp án đúng là: C

Gọi số tự nhiên có 3 chữ số cần tìm là: abc¯ (a ≠ 0) khi đó:

c có 3 cách chọn (vì abc¯ là số lẻ nên c có thể chọn 1 trong 3 số 3; 5; 7)

a có 6 cách chọn (vì a có thể chọn tuỳ ý một trong 6 số 2; 3; 4; 5; 6; 7)

b có 7 cách chọn (vì b có thể chọn tuỳ ý một trong 7 số 0; 2; 3; 4; 5; 6; 7)

Vậy có: 3.6.7 = 126 số.

Câu 2. Hệ số của x5 trong khai triển của (5 – 2x)

A. 400;

B. – 32;

C. 3 125;

D. – 6 250.

Đáp án đúng là: B

Ta có (a + b)5 = a5 + 5a4b +10a3b2 + 10a2b3 + 5ab4 + b5

Do đó: (5 – 2x)5 = 55 + 5.54.(– 2x) + 10.53.(– 2x) 2 + 10.52.(– 2x)3 + 5.5.(– 2x)4 + (– 2x)5

= 3 125 – 6 250x + 5 000x2 – 2 000x3 + 400x4 – 32x5

= – 32x5 + 400x4 – 2 000x3 + 5 000x2 – 6 250x + 3 125

Hệ số của x5 trong khai triển là – 32.

Câu 3. Có 7 quả cầu đỏ khác nhau, 5 quả cầu vàng khác nhau và 3 quả cầu trắng khắc nhau. Hỏi có bao nhiêu cách lấy 3 quả cầu có đủ ba màu.

A. 105;

B. 320;

C. 15;

D. 319.

Đáp án đúng là: A

Vì chọn 3 quả cầu có đủ 3 màu nên mỗi màu ta chọn một quả

Quả cầu đỏ có 7 cách chọn

Quả cầu vàng có 5 cách chọn

Quả cầu trắng có 3 cách chọn

Vậy có 7.5.3 = 105 cách.

Câu 4. Cho các số 0; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau

A. 12;

B. 96;

C. 64;

D. 256.

Đáp án đúng là: B

Gọi số tự nhiên có 4 chữ số cần tìm là: abcd¯ (a ≠ 0), khi đó:

a có 4 cách chọn (vì a có thể chọn tuỳ ý một trong 4 số 5; 6; 7; 8)

b có 4 cách chọn (vì b ≠ a nên b không được chọn lại số mà a đã chọn vậy b có 4 số để chọn)

c có 3 cách chọn (vì c ≠ a, c ≠ b nên c không được chọn lại số mà a, b đã chọn vậy c còn 3 số để chọn)

d có 2 cách chọn (vì d ≠ a, d ≠ b, d ≠ c nên d không được chọn lại số mà a, b, c đã chọn vậy c còn 2 số để chọn)

Vậy có: 4.4.3.2 = 96 số

Câu 5. Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn:

A. 80;

B. 60;

C. 243;

D. 100.

Đáp án đúng là: D

Gọi số tự nhiên cần tìm có dạng abc¯ (a ≠ 0) Khi đó:

a có 4 cách chọn (vì a là số chẵn và a ≠ 0 nên a chỉ được chọn một trong 4 số 2; 4; 6; 8)

b có 5 cách chọn (vì b là số chẵn nên b chỉ được chọn một trong 5 số 0; 2; 4; 6; 8)

c có 5 cách chọn (vì c là số chẵn nên c chỉ được chọn một trong 5 số 0; 2; 4; 6; 8)

Vậy ta có: 4.5.5 = 100 số

Câu 6. Cho số tự nhiên n thỏa mãn An2+2Cnn=22. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng

A. – 4320;

B. – 1440;

C. 4320;

D. 1080.

Đáp án đúng là: C

Điều kiện n ≥ 2; n ℕ.

Ta có An2+2Cnn=22n!n2!+2=22

 n(n – 1) = 20

n = 5 hoặc n = – 4

Kết hợp với điều kiện n = 5 thoả mãn

Ta có (a + b)5 = a5 + 5a4b +10a3b2 + 10a2b3 + 5ab4 + b5

Thay a = 3x; b = – 4 vào công thức ta có:

(3x – 4)5 = (3x)5 + 5(3x)4.(– 4) +10.(3x)3(– 4)2 + 10.(3x)2(– 4)3 + 5(3x)(– 4)4 + (– 4)5

= 243x5 – 1620x4 + 4 320x3 – 5 760x2 + 3 840x – 1 024

Vậy hệ số của x3 là 4 320.

Câu 7. Có bao nhiêu số tự nhiên n thỏa mãn ?

A. 0;

B. 1;

C. 2;

D. 3.

Đáp án đúng là: B

Điều kiện n ≥ 3; n  ℕ

Ta có An3+5An2=2n+15 n!n3!+5.n!n2!=2n+15.

 n(n – 1)(n – 2) + 5n(n – 1) = 2(n + 15)

 n3 + 2n2 – 5n – 30 = 0

 (n – 3)(n2 + 5n + 10) = 0

 n = 3 (vì n2 + 5n + 10 > 0 với mọi n)

Vậy có 1 giá tri của n thoả mãn điều kiện.

Câu 8. Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số?

A. 720;

B. 2401;

C. 1176;

D. 2058.

Đáp án đúng là: C

Gọi số có ba chữ số cần tìm là abcd¯, với a ≠ 0

a có 6 cách chọn (vì a ≠ 0 nên a có thể chọn một trong 6 số 1; 2; 3; 4; 5; 6)

b có 7 cách chọn (vì b có thể chọn tuỳ ý một trong 7 số 0; 1; 2; 3; 4; 5; 6)

c có 7 cách chọn (vì c có thể chọn tuỳ ý một trong 7 số 0; 1; 2; 3; 4; 5; 6)

d có 4 cách chọn (vì abcd¯ là số chẵn nên d phải là số chẵn vậy d chỉ được chọn một trong 4 số 0; 2; 4; 6)

Vậy số các số cần tìm là 6.7.7.4 = 1176 (số).

Câu 9. Từ các chữ số 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số

A. 375;

B. 625;

C. 120;

D. 250.

Đáp án đúng là: A

Gọi số tự nhiên chẵn có 4 chữ số cần tìm là: abcd¯ (a ≠ 0) khi đó:

d có 3 cách chọn (vì số tự nhiên chẵn nên d có thể chọn một trong 3 số 2; 4; 6)

a có 5 cách chọn (vì a có thể chọn tuỳ ý một trong 5 số 2; 3; 4; 5; 6)

b có 5 cách chọn (vì b có thể chọn tuỳ ý một trong 5 số 2; 3; 4; 5; 6)

c có 5 cách chọn (vì c có thể chọn tuỳ ý một trong 5 số 2; 3; 4; 5; 6)

Vậy có: 3.5.5.5 = 375 số.

Câu 10. Giá trị của x thoả mãn phương trình là:

A. x = 10;

B. x = 9;

C. x = 11;

D. x = 12.

Đáp án đúng là: B

Điều kiện: x ≥ 10; x  ℕ

Ta có Ax10+Ax9=9Ax8x!x10!+x!x9!=9.x!x8!

x!x8!1x10(x9)+1x9=9.x!x8!

30 Bài tập trắc nghiệm Toán 10 Chương 5 Cánh diều có lời giải

Kết hợp với điều kiện ta được x = 9 thoả mãn.

TH2. x!x8!=0

Vì x ≥ 10 nên x!x8!0

Vậy x = 9.

Tài liệu có 6 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
719 47 14
Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
607 12 6
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
694 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
675 13 8
Tải xuống