Cho (un) là cấp số cộng có u2 + u4 = 22, u1 . u5 = 21 và công sai d dương. Tính u100, S100

245

Với Giải Bài 24 trang 50 SBT Toán 11 Tập 1 trong Bài 2: Cấp số cộng Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho (un) là cấp số cộng có u2 + u4 = 22, u1 . u5 = 21 và công sai d dương. Tính u100, S100

Bài 24 trang 50 SBT Toán 11 Tập 1Cho (un) là cấp số cộng có u2 + u4 = 22, u1 . u5 = 21 và công sai d dương.

a) Tính u100, S100.

b) Tính tổng: u1 + u5 + u9 + ... + u101.  

Lời giải:

Ta có u2 + u4 = (u1 + d) + (u1 + 3d) = 2u1 + 4d = 22, suy ra 4d = 22 – 2u1.

Lại có u1 . u5 = u1 . (u1 + 4d) = u1 . (u1 + 22 – 2u1) = u1 . (22 – u1).

Mà u1 . u5 = 21, do đó u1 . (22 – u1) = 21 ⇔ 22u1 – u12 – 21 = 0 Cho (un) là cấp số cộng có u2 + u4 = 22, u1 . u5 = 21 và công sai d dương

Với u1 = 1, suy ra d=222u14=222.14=5>0  (thỏa mãn).

Với u1 = 21, suy ra d=222u14=222.214=5<0  (không thỏa mãn).

Vậy cấp số cộng (un) có số hạng đầu u1 = 1 và công sai d = 5.

a) Ta có: u100 = u1 + (100 – 1)d = 1 + 99 . 5 = 496.

SBT Toán 11 (Cánh diều) Bài 2: Cấp số cộng (ảnh 13).

b) Ta có u5 – u1 = (u1 + 4d) – u1 = 4d, tương tự u9 – u5 = 4d, ...

Do đó các số u1, u5, u9, ..., u100 lập thành một cấp số cộng có số hạng đầu u1 = 1 và công sai d' = 4d = 4 . 5 = 20.

Lại có (101 – 1) : 4 + 1 = 26 nên tổng u1 + u5 + u9 + ... + u101 gồm 26 số hạng.

Do vậy, u1 + u5 + u9 + ... + u101 SBT Toán 11 (Cánh diều) Bài 2: Cấp số cộng (ảnh 14) .

Đánh giá

0

0 đánh giá