Cho (un) là cấp số cộng có u1 + u5 + u9 + u13 + u17 + u21 = 234. Tính u2 + u8 + u14 + u20

131

Với Giải Bài 26 trang 51 SBT Toán 11 Tập 1 trong Bài 2: Cấp số cộng Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho (un) là cấp số cộng có u1 + u5 + u9 + u13 + u17 + u21 = 234. Tính u2 + u8 + u14 + u20

Bài 26 trang 51 SBT Toán 11 Tập 1Cho (un) là cấp số cộng có u1 + u5 + u9 + u13 + u17 + u21 = 234.

a) Tính u2 + u8 + u14 + u20.

b) Tìm u1, d, biết u10 = 37.  

Lời giải:

a) Ta có: u1 + u5 + u9 + u13 + u17 + u21

= u1 + (u1 + 4d) + (u1 + 8d) + (u1 + 12d) + (u1 + 16d) + (u1 + 20d)

= 6u1 + 60d

Mà u1 + u5 + u9 + u13 + u17 + u21 = 234 nên 6u1 + 60d = 234 ⇔ u1 + 10d = 39.

Lại có u2 + u8 + u14 + u20 = (u1 + d) + (u1 + 7d) + (u1 + 13d) + (u1 + 19d)

= 4u1 + 40d = 4(u1 + 10d) = 4 . 39 = 156. 

Vậy u2 + u8 + u14 + u20 = 156.

b) Ta có u1 + 10d = (u1 + 9d) + d = u10 + d = 39.

Mà u10 = 37 nên suy ra d = 39 – u10 = 39 – 37 = 2.

Do đó, u1 = 39 – 10d = 39 – 10 . 2 = 19.

Vậy u1 = 19 và d = 2.

Đánh giá

0

0 đánh giá