Với Giải trang 50 Tập 1 SBT Toán lớp 11 trong Bài 2: Cấp số cộng Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
SBT Toán 11 trang 50 Tập 1 (Cánh Diều)
A. un = 3n.
B. un = 1 – 3n.
C. un = 3n + 1.
D. un = 3 + n2.
Lời giải:
Đáp án đúng là: B
Xét từng đáp án, ta thấy dãy số ở đáp án B là cấp số cộng.
Thật vậy, ta có un – un – 1 = (1 – 3n) – [1 – 3(n – 1)] = 1 – 3n – 1 + 3n – 3 = – 3 luôn không đổi với mọi n ∈ ℕ* và u1 = 1 – 3 . 1 = – 2.
Vậy (un) với un = 1 – 3n là một cấp số cộng với số hạng đầu u1 = – 2 và công sai d = – 3.
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: A
Gọi d là công sai của cấp số cộng.
Ta có u8 = u1 + (8 – 1)d = u1 + 7d.
Mà ; u8 = 26 nên ta có 26 = + 7d, từ đó suy ra d = .
A. 7; 12; 17.
B. 6; 10; 14.
C. 8; 13; 18.
D. 6; 12; 18.
Lời giải:
Đáp án đúng là: A
Giả sử cấp số cộng có số hạng đầu u1 = 2, công sai d, ba số hạng xen giữa 2 và 22 lần lượt là u2, u3, u4 và số hạng thứ năm là u5 = 22.
Khi đó ta có u5 = u1 + (5 – 1)d = 2 + 4d = 22, suy ra d = 5.
Do đó, u2 = u1 + d = 2 + 5 = 7; u3 = u2 + d = 7 + 5 = 12 và u4 = u3 + d = 12 + 5 = 17.
Vậy ba số hạng cần tìm là 7; 12; 17.
Bài 18 trang 50 SBT Toán 11 Tập 1: Cho cấp số cộng (un) biết u5 + u7 = 19. Giá trị của u2 + u10 là:
A. 38.
B. 29.
C. 12.
D. 19.
Lời giải:
Đáp án đúng là: D
Giả sử d là công sai của cấp số cộng (un).
Ta có u5 + u7 = [u1 + (5 – 1)d] + [u1 + (7 – 1)d] = 2u1 + 10d.
Và u2 + u10 = (u1 + d) + [u1 + (10 – 1)d] = 2u1 + 10d.
Do đó, u2 + u10 = u5 + u7 = 19.
A. – 410.
B. – 205.
C. 245.
D. – 230.
Lời giải:
Đáp án đúng là: B
Tổng 10 số hạng đầu của cấp số cộng đó là:
A. u1 = 3, d = 2.
B. u1 = 5, d = 2.
C. u1 = 8, d = – 2.
D. u1 = – 5, d = 2.
Lời giải:
Đáp án đúng là: B
Ta có S1 = 12 + 4 . 1 = 5 = u1;
S2 = 22 + 4 . 2 = 12, mà S2 = u1 + u2 = 5 + u2, từ đó suy ra u2 = 12 – 5 = 7.
Do đó, công sai d của cấp số cộng là d = u2 – u1 = 7 – 5 = 2.
Vậy u1 = 5, d = 2.
Lời giải:
Do ba số theo thứ tự lập thành một cấp số cộng nên
⇒ 2(a + b)(b + c) = (c + a)(2b + c + a)
⇔ 2ab + 2ac + 2b2 + 2bc = 2bc + c2 + ca + 2ab + ac + a2
⇔ 2b2 = a2 + c2
⇔ b2 – a2 = c2 – b2.
Suy ra ba số a2, b2, c2 theo thứ tự cũng lập thành một cấp số cộng.
Lời giải:
Ba số 10 – 3x, 2x2 + 3, 7 – 4x theo thứ tự lập thành một cấp số cộng khi
(2x2 + 3) – (10 – 3x) = (7 – 4x) – (2x2 + 3)
⇔ 2x2 + 3 – 10 + 3x = 7 – 4x – 2x2 – 3
⇔ 4x2 + 7x – 11 = 0
Vậy thì thỏa mãn yêu cầu bài toán.
Bài 23 trang 50 SBT Toán 11 Tập 1: Tìm số hạng đầu và công sai của cấp số cộng (un), biết:
Lời giải:
a) Ta có .
Vậy cấp số cộng đã cho có số hạng đầu u1 = 1 và công sai d = 3.
b) Ta có
Vậy cấp số cộng đã cho có số hạng đầu u1 = 16 và công sai d = – 3.
c) Ta có
Vậy cấp số cộng đã cho có số hạng đầu u1 = 3 và công sai d = 3.
b) Tính tổng: u1 + u5 + u9 + ... + u101.
Lời giải:
Ta có u2 + u4 = (u1 + d) + (u1 + 3d) = 2u1 + 4d = 22, suy ra 4d = 22 – 2u1.
Lại có u1 . u5 = u1 . (u1 + 4d) = u1 . (u1 + 22 – 2u1) = u1 . (22 – u1).
Mà u1 . u5 = 21, do đó u1 . (22 – u1) = 21 ⇔ 22u1 – u12 – 21 = 0
Với u1 = 1, suy ra (thỏa mãn).
Với u1 = 21, suy ra (không thỏa mãn).
Vậy cấp số cộng (un) có số hạng đầu u1 = 1 và công sai d = 5.
a) Ta có: u100 = u1 + (100 – 1)d = 1 + 99 . 5 = 496.
.
b) Ta có u5 – u1 = (u1 + 4d) – u1 = 4d, tương tự u9 – u5 = 4d, ...
Do đó các số u1, u5, u9, ..., u100 lập thành một cấp số cộng có số hạng đầu u1 = 1 và công sai d' = 4d = 4 . 5 = 20.
Lại có (101 – 1) : 4 + 1 = 26 nên tổng u1 + u5 + u9 + ... + u101 gồm 26 số hạng.
Do vậy, u1 + u5 + u9 + ... + u101 .
Lời giải:
Gọi số hạng nhỏ nhất trong các số cần tìm là u và công sai của cấp số cộng là d.
Khi đó, năm số hạng liên tiếp là u, u + d, u + 2d, u + 3d, u + 4d.
Vì tổng của chúng bằng 40 nên u + u + d + u + 2d + u + 3d + u + 4d = 40
⇔ 5u + 10d = 40 ⇔ u + 2d = 8.
⇔ u = 8 – 2d. (1)
Lại có tổng bình phương của chúng bằng 480 nên
u2 + (u + d)2 + (u + 2d)2 + (u + 3d)2 + (u + 4d)2 = 480. (2)
Thế (1) vào (2) ta được:
(8 – 2d)2 + (8 – 2d + d)2 + (8 – 2d + 2d)2 + (8 – 2d + 3d)2 + (8 – 2d + 4d)2 = 480
⇔ (8 – 2d)2 + (8 – d)2 + 82 + (8 + d)2 + (8 + 2d)2 = 480
⇔ 64 – 32d + 4d2 + 64 – 2d + d2 + 64 + 64 + 2d + d2 + 64 + 32d + 4d2 = 480
⇔ 10d2 + 320 = 480
⇔ 10d2 = 160
⇔ d2 = 16
⇔ d = ±4
+ Với d = 4, ta có u = 8 – 2 . 4 = 0.
+ Với d = – 4, ta có u = 8 – 2 . (– 4) = 16.
Vậy năm số hạng liên tiếp cần tìm là 0, 4, 8, 12, 16.
Xem thêm các bài giải Toán 11 Cánh Diều hay, chi tiết khác:
Bài 18 trang 50 SBT Toán 11 Tập 1: Cho cấp số cộng (un) biết u5 + u7 = 19. Giá trị của u2 + u10 là
Bài 23 trang 50 SBT Toán 11 Tập 1: Tìm số hạng đầu và công sai của cấp số cộng (un), biết
Bài 24 trang 50 SBT Toán 11 Tập 1: Cho (un) là cấp số cộng có u2 + u4 = 22, u1 . u5 = 21 và công sai d dương. a) Tính u100, S100.
Bài 26 trang 51 SBT Toán 11 Tập 1: Cho (un) là cấp số cộng có u1 + u5 + u9 + u13 + u17 + u21 = 234. a) Tính u2 + u8 + u14 + u20.
Bài 27 trang 51 SBT Toán 11 Tập 1: Cho dãy số (un) biết u1 = – 2, với n ∈ ℕ*. Đặt với n ∈ ℕ*.
a) Chứng minh rằng dãy số (vn) là một cấp số cộng. Tìm số hạng đầu, công sai của cấp số cộng đó.
Xem thêm các bài giải Toán 11 Cánh Diều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.