Toptailieu.vn xin giới thiệu 50 bài tập trắc nghiệm Phương trình bậc hai với hệ số thực (có đáp án) chọn lọc, hay nhất giúp học sinh lớp 12 ôn luyện kiến thức để đạt kết quả cao trong các bài thi môn Toán.
Mời các bạn đón xem:
Phương trình bậc hai với hệ số thực
Câu 1: Phương trình z2 -az + b = 0 (a, b ∈ R) có nghiệm z = 1 + i khi
A. a = 2, b = -2
B. a = 2, b = 2
C. a = -2, b = 2
D. a = -2, b = -2
Lời giải:
Thay z = 1 + i vào phương trình đã cho ta có:
Đáp án cần chọn là:B
Câu 2: Để phương trình z2 + bz + c = 0 nhận z1 = -4 + 2i và z2 = -4 - 2i làm nghiệm thì
A. b = -8, c = 20
B. b = -8, c = -20
C. b = 8, c = 20
D. b = 8, c = 20
Lời giải:
Gọi z1, z2 là hai nghiệm của phương trình đã cho, áp dụng hệ thức Vi-ét ta có:
Để phương trình đã cho nhận z1, z2 làm nghiệm thì
Đáp án cần chọn là:D
Câu 3: Phương trình z2 + 6z + 15 = 0 có các nghiệm là z1, z2.Giá trị biểu thức T = |z1| + |z2| bằng:
A. 2√15
B. 6
C. 4√5
D. 2√3
Lời giải:
Ta có:Δ' = 9 - 15 = -6 = 6i2
Các nghiệm của phương trình là z1 = - 3 - i√6, z2 = - 3 + i√6
Do đó
Đáp án cần chọn là:A
Câu 4: Phương trình z1 = 1 + 2i, z2 = 2 - 3i có nghiệm là z = 2 + i khi
A. a = 1, b = 4
B. a = -1, b = 4
C. a = -1, b = -4
D. a = 1, b = -4
Lời giải:
Thay z = 2 + i vào phương trình đã cho ta có:
Đáp án cần chọn là:D
Câu 5: Phương trình (1 + i)2 = -7 + i có các nghiệm là
A. -1 - 2i và 1 + 2i
B. -1 + 2i và 1 + 2i
C. -1 + 2i và 1 - 2i
D. 1 + 2i và 1 - 2i
Lời giải:
Phương trình đã cho tương đương với
Viết -3 + 4i = 4i2 + 4i + 1 = (2i + 1)2, ta có: z2 = (2i + 1)2 <=> z = ±(2i + 1)
Chú ý: Nếu việc viết -3 + 4i = (2i + 1)2 gặp khó khăn thì có thể đặt z = a + bi (a, b ∈ R). Ta có :
(a + bi)2 = -3 + 4i <=> a2 - b2 + 2abi = -3 + 4i
Từ phương trình thứ hai của hệ ta có b = 2/a
Thay vào phương trình thứ nhất của hệ ta có
Vì a ∈ R và a2 ≥ 0 nên a2 = 1 hay a = ±1 . Từ đó ta có hai nghiệm : z1 = -1 - 2i và z2 = 1 + 2i
Đáp án cần chọn là:A
Câu 6: Phương trình z2 + 4x + 5 = 0 có các nghiệm là
A. 2 ± i
B. -2 ± i
C. 4 ± i
D. -4 ± i
Lời giải:
Ta có: Δ' = 22 - 1.5 = -1 = i2. Phương trình có hai nghiệm là:
Đáp án cần chọn là:B
Câu 7: Phương trình z2 + 8z + 17 = 0 có hai nghiệm
A. 1 - i và 1 - 2i
B. 4 - i và 4 + i
C. -4 - i và -4 + i
D. -2 + 2i và -2 + 4i
Lời giải:
Ta có: Δ = 16 - 17 = -1 = i2. Phương trình có các nghiệm là:
z1 = -4 - i, z2 = -4 + i
Đáp án cần chọn là:C
Câu 8: Phương trình z2 - 4z + 9 = 0 có hai nghiệm. Giá trị biểu thức T = |z1| + |z2| bằng
A. – 6
B. 6
C. 8
D. 2√3
Lời giải:
Ta có: Δ' = 4 - 9 = -5 = 5i2. Phương trình có hai nghiệm là:
z1,2 = 2 ± i√5
Vậy T = 2√(4 + 5) = 2√9 = 6
Đáp án cần chọn là:B
Câu 9: Phương trình z4 + 3z2 - 4 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T = |z1| + |z2| + |z3| + |z4| bằng
A. 6
B. 2√2
C. 2 + 2√2
D. 4 + 2√2
Lời giải:
Ta có
⇒ |z1| = |z2| = 1; |z3| = |z4| = 2
Vậy T = 1 + 1 + 2 + 2 = 6
Đáp án cần chọn là:A
Câu 10: Số phức z thỏa mãn
Giá trị biểu thức
A. 1
B. 2
C. 3
D. 3672
Lời giải:
Ta có: z + 1/z = √3 <=> z2 - √3z + 1 = 0 (1)
Xét phương trình (1): Ta có: Δ = (√3)2 - 4.1.1 = -1 = i2
Phương trình (1) có hai nghiệm là:
Do đó
Ta có:
Vậy T = 1 + 1 = 2
Đáp án cần chọn là:B
Câu 11: Tìm các căn bậc 2 của z = – 5 + 12i
A. 2 + 3i và – 2 - 3i
B. 1 + 4i và – 1- 4i
C. 2- 3i và – 2 + 3i
D. 3 – 4i và -3 + 4i
Lời giải:
Gọi = a + bi, là căn bậc hai của số phức z
Suy ra: (a + bi)2 = - 5 + 12i
⇒ a2 + 2abi- b2 = - 5 + 12i
⇒ (a2- b2 + 5) + (2ab – 12) i =0
Từ phương trình trên ta có hệ phương trình :
Rút b từ phương trình thứ hai thay vào phương trình thứ nhất, ta có:
Hệ này có 2 nghiệm: (2; 3) và ( -2; -3).
Vậy số phức z có 2 căn bậc hai là 2 + 3i và – 2- 3i.
Đáp án cần chọn là:A
Câu 12: Gọi z là căn bậc hai của số phức ω = 4 + 6√5i . Tìm mô đun của z?
A. 3
B. 4
C. √14
D.√10
Lời giải:
Gọi z = x + yi, (x,y∈ R) là một căn bậc hai của ω
Khi đó ta có:
(x + yi)2 = 4 + 6√5i
⇒ x2 + 2xyi - y2 = 4 + 6√5i
⇒(x2 - y2-4) + (2xy - 6√5)i =0
⇔
Giải hệ phương trình tìm được nghiệm:
⇔
Vậy số phức đã cho có hai căn bậc hai là: z1 = 3 + i√5; z2 = -3 -i√5
|z1 | = |z2| = √14
Đáp án cần chọn là:C
Câu 13: Cho số phức z = .
Gọi ω = a + bi ( a,b ∈ R) là căn bậc hai của số phức z. Tính P= a2 + b2 ?
A. ±3
B. ±√10
C. ±√5
D. ±√13
Lời giải:
Ta có: z = =
= = -1 + 3i
Do ω = a + bi ( a,b ∈ R) là căn bậc hai của số phức z.
⇒ ( a + bi)2 = -1 + 3i
⇔ a2 + 2abi – b2 + 1 – 3i = 0
⇔( a2 – b2 + 1) + ( 2ab – 3) =0
Từ đó ta có hệ phương trình sau:
⇔
⇔ ⇔
Đáp án cần chọn là:B
Câu 14: Gọi ω = 2 + ai ( a ∈ R) là một căn bậc hai của số phức z= b + 12i; (b ∈ R) . Tính a + b?
A.-1
B. 1
C. – 2
D. 3
Lời giải:
Do ω = 2 + ai là một căn bậc hai của số phức z = b + 12i nên ta có:
( 2 + ai)2 = b + 12i
⇔ 4 + 4ai- a2 = b + 12i
⇔ (4 – a2 – b) + ( 4a – 12)i =0
Từ đó ta có hệ phương trình sau:
Do đó, a + b = 3 + (-5) = - 2.
Đáp án cần chọn là:C
Câu 15: Nghiệm của phương trình z2 - 2z + 7 =0 trên tập số phức là:
A. z = 1±√6i
B. z = 1±2√2i
C. z = 1±√7i
D.z = 1±√2i
Lời giải:
Ta có: ∆’= b’2 – ac = (-1)2 – 7.1 = - 6 < 0
Suy ra phương trình đã cho có 2 nghiệm phức: z = 1 + √6i và z = 1-√6i
Đáp án cần chọn là:A
Câu 16: Gọi z0 là nghiệm phức có phần ảo âm của phương trình 2z2 – 6z + 5 =0. Tìm i.z0?
A. iz0 =
B. iz0 =
C. iz0 =
D. iz0 =
Lời giải:
Xét phương trình: 2z2 – 6z + 5= 0
Có ∆’= (-3)2 – 2. 5 = -1
Phương trình đã cho có hai nghiệm phức là :
Do đó, nghiệm z0 có phần ảo âm là
z0 = z2 =
Do đó : i.z0 = ( ).i =
Đáp án cần chọn là:B
Câu 17: Gọi z1 và z2 là các nghiệm của phương trình z2 – 4z + 9= 0. Gọi M, N là các điểm biểu diễn của z1 và z2 trên mặt phẳng phức. Khi đó độ dài của MN là:
A. MN = 4
B. MN = 5
C. MN = 2√5
D. MN = √5
Lời giải:
Xét phương trình z2 – 4z + 9=0
⇔ z2 – 4z + 4 =- 5 ⇔ ( z-2)2 = 5i2
⇔
Khi đó, tọa độ hai điểm M và N biểu diễn hai số phức z1, z2 là M(2;√5);N(2;-√5) .
⇒ MN = = 2√5
Đáp án cần chọn là:C
Câu 18: Kí hiệu z0 là nghiệm phức có phần ảo dương của phương trình 4z2 – 16z + 17 = 0 . Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w= i.z0 ?
A. M( ;2).
B. M(- ;2)
C. M( ;2).
D. M(- ;2).
Lời giải:
Xét phương trình: 4z2 – 16z + 17 = 0 có ∆’= 82 – 4. 17= - 4= (2i)2.
Phương trình có hai nghiệm
z1 = 2- ; z2 = 2 + .
Do z0 là nghiệm phức có phần ảo dương nên z0 = z2 = 2 + .
Ta có w= i.z0 = (2 + ).i = -1⁄2 + 2i
Điểm biểu diễn số phức w là M(- ;2)
Đáp án cần chọn là:B
Câu 19: Cho phương trình sau:
z3 - 3( 1 + 2i).z2 + ( -3 + 8i)z + 5 – 2i =0. Tính tổng các nghiệm của phương trình trên ?
A. 2 + 5i
B. -3 + 6i
C. 3 + 6i
D. – 2 + 5i
Lời giải:
* Nhẩm nghiệm: Ta thấy tổng các hệ số của phương trình bằng 0 nên phương trình có nghiệm z=1.
* Khi đó:
z3 - 3( 1 + 2i).z2 + ( -3 + 8i)z + 5 – 2i =0
z3 - 3(1 + 2i)z2 + (-3 + 8i)z + 5-2i = 0
⇔(z-1)[z2-2(1 + 3i)z + 2i-5]
⇔
⇔
Vậy nghiệm của phương trình đã cho là : z= 1; z= i và z= 2 + 5i.
Tổng các nghiệm là: 1 + i + 2 + 5i = 3 + 6i
Đáp án cần chọn là:C
Câu 20: Cho phương trình: z3 + ( 2- 2i).z2 + ( 5 – 4i)z – 10i =0 biết phương trình có nghiệm thuần ảo. Tìm các nghiệm của phương trình đã cho
A. z= -2i, z = 1 - 2i và z = 1 + 2i.
B. z= 2i, z = - 1 + 2i và z = - 1- 2i.
C. z= -1 + i, z = 1 + i và z = - 1- i.
D. Đáp án khác
Lời giải:
Đặt z = yi với y ∈ R
Phương trình đã cho có dạng:
(iy)3 + (2i-2)(yi)2 + (5-4i)(yi) – 10i = 0.
⇔ -iy3 – 2y2 + 2iy2 + 5iy + 4y – 10i = 0 = 0 + 0i
Đồng nhất hoá hai vế ta được:
Giải hệ này ta được nghiệm duy nhất
y = 2.
Suy ra phương trình có nghiệm thuần ảo z = 2i.
* Vì phương trình nhận nghiệm 2i.
⇒ vế trái của phương trình đã cho có thể phân tích dưới dạng:
z3 + (2 – 2i)z2 + (5 – 4i)z – 10i
= (z – 2i)(z2 + az + b) (a, b ∈ R)
đồng nhất hoá hai vế ta giải được a = 2 và b = 5.
⇒ (1)⇔ (z – 2i)(z2 + 2z + 5) = 0 ⇔ ⇔
Vậy nghiệm của phương trình đã cho là z= 2i, z= - 1 + 2i và z= - 1- 2i.
Đáp án cần chọn là:B
Câu 21:Cho phương trình: z4 + 2z3 – z2 – 2z + 10 = 0. Biết phương trình có 1 nghiệm phức là z= - 2 + i. Tìm tổng các phần thực của các nghiệm của phương trình đã cho?
A. – 2
B. 2
C. 4
D. – 4
Lời giải:
Phương trình trên có 1 nghiệm là
z1 = - 2 + i thì phương trình cũng có nghiệm z2 = - 2- i.
Suy ra, z4 + 2z3 – z2 – 2z + 10 = 0
⇔ ( z + 2- i). (z + 2 + i). (z2 + 4z + 5) =0
⇔ ⇔
Vậy phương trình trên có 4 nghiệm là :
- 2 + i,- 2 –i, 1 + i và 1- i.
Tổng phần thực của bốn nghiệm của phương trình:
- 2 + (-2) + 1 + 1 = - 2 .
Đáp án cần chọn là:A
Câu 22: Cho phương trình sau: (z2 + 3z + 6)2 + 2z.(z2 + 3z + 6) – 3z2 = 0
A.
B.
C.
D.
Lời giải:
Đặt t = z2 + 3z + 6 phương trình đã cho có dạng:
t2 + 2zt – 3z = 0 ⇔ (t – z)(t + 3z) = 0
⇔
+ Với t = z ⇔ z2 + 3z + 6 – z = 0
⇔ z2 + 2z + 6 = 0
⇔
+ Với t = -3z ⇔ z2 + 3z + 6 + 3z = 0
⇔ z2 + 6z + 6 = 0
⇔
Đáp án cần chọn là:A
Câu 23: Giải phương trình sau: z4 - z3 + + z + 1 = 0
A. z = 2 + i; z = 2 -i ; z = ; z = .
B. z = 1 + i; z = 1-i ; z = ; z = .
C. z = 1 + 2i; z = 1- 2i ; z = ; z = .
D. z = 1 + i; z = 1-i ; z = ; z =
Lời giải:
Nhận xét: z = 0 không là nghiệm của phương trình (1) vậy z ≠ 0 .
Chia hai vế phương trình cho z2 ta được: (z2 + ) - (z- ) +
. Khi đó : t2 = z2 + = 0
Đặt t = z - . Khi đó :
t2 = z2 + -2 ⇔ z2 + = t2 + 2
Phương trình (2) có dạng: t2 – t + (3)
Δ = 1 - 4. = -9 = 9i2
PT (3) có 2 nghiệm t= , t= .
+ Với t= ta có z - =
⇔ 2z2 - (1 + 3i)z -2 = 0 (4)
Có Δ = (1 + 3i)2 + 16
= 8 + 6i = 9 + 6i + i2
= (3 + i)2
PT (4) có 2 nghiệm:
z = = 1 + i ,
z = = .
+ Với t = ta có : z - ⇔2z2-(1-3i)z-2 = 0 (5)
Có Δ = (1 - 3i)2 + 16 = 8 - 6i = 9 - 6i + i2 = (3-i)2
PT(5) có 2 nghiệm:
z = ' ,
z == .
Vậy PT đã cho có 4 nghiệm: z=1 + i; z=1-i ; z= ; z= .
Đáp án cần chọn là:B
Câu 24: Gọi z1, z2 là các nghiệm của phương trình z2 + 4z + 5=0. Đặt (1 + z1)100 + (1 + z2)100 . Khi đó
A. ω= 240.i
B.ω=-251
C.ω=251
D.ω=-250i
Lời giải:
Ta có: z2 + 4z + 5=0
⇔ z= .
Suy ra:
ω= (1 + z1)100 + (1 + z2)100
= ( - 1 + i)100 + ( -1- i)100
= [(-1 + i)2]50 + [(-1-i)2]2 = (2i)50 + (-2i)50
= 250.i48.i2 + (-2)50.i48.i2
= 250.1.(-1) + 250.i.(-1)=-252
Đáp án cần chọn là:B
Câu 25: Kí hiệu z1, z2, z3, z4 là 4 nghiệm phức của phương trình x4 + 2x2 + 4= 0. Tính tổng T bằng |z1| + |z2| + |z3| + |z4|:
A. 2
B. 2√2
C. 4
D. 4√2
Lời giải:
Xét phương trình: x4 + 2x2 + 4 =0 (*)
Đặt t= x2, phương trình (*) trở thành:
t2 + 2t + 4 = 0
⇔ ⇔ .
Giả sử z1,2 là hai nghiệm của phương trình (1) và z3,4 là hai nghiệm của phương trình (2) .
Khi đó |z1| 2 = |z2| 2 =|-1-√3.i| = 2
⇒ |z1| = |z2| = √2 .
Tương tự ta có :
|z3| 2 = |z4| 2 = |-1-√3.i| = 2
⇒ |z3| = |z4| = √2 .
Vậy T = |z1| + |z2| + |z3| + |z4| = 4√2
Đáp án cần chọn là:D
Câu 26: Cho các số phức a, b,c, z thỏa mãn
az2 + bz + c=0, . Gọi z1, z2 lần lượt là hai nghiệm của phương trình bậc hai đã cho. Tính giá trị của P = |z1 + z2|2 + |z1-z2|2 -2( |z1 + z2|)2.
A. P = 2 .
B. P =4 .
C. P = .
D. P = 0.5
Lời giải:
Giả sử phương trình az2 + bz + c= 0 có hai nghiệm phức z1, z2. Theo hệ thức Vi-et ta có:
Ta có
|z1 + z2|2 + |z1-z2|2
= 2(|z1|2 + |z2|2)
Do đó : |z1 + z2|2 + |z1-z2|2 -2( |z1 + z2|)2
= 2( |z1 + z2|)2-2( |z1-z2|)2
= 4|z1|.|z2| = 4|z1.z2| = 4.
Đáp án cần chọn là:B
Câu 27: Cho các số phức z1 ≠0 ; z2 ≠0 thỏa mãn điều kiện . Tính giá trị của biểu thức P =
A. .
B. √2
C. 2
D.
Lời giải:
Theo giả thiết ta có:
⇔
⇔(2z2 + z1).(z1 + z2)=z1.z2
⇔ 2z2.z1 + 2z22 + z12 + z2.z1-z2.z1 = 0
⇔ 2.z2.z1 + 2z22 + z12 = 0 (*)
Do z2 ≠ 0 nên ta chia cả hai vế của (*) cho z2 ta được :
Trong cả hai trường hợp ta có
= √2
⇒
⇒P=√2 + =
Đáp án cần chọn là:D
Câu 28: Cho hai số phức z1, z2 là các nghiệm của phương trình z2 + 4z + 13= 0.Tính môđun của số phức w = ( z1 + z2 ). i + z1.z2
A.|w| = 3
B. |w| = √185
C.|w| = √153
D. |w| = √17
Lời giải:
Xét phương trình z2 + 4z + 13 = 0 có
∆’= 22 – 13 = - 9 = 9i2
Do đó phương trình trên có hai nghiệm là :
Khi đó:
w = ( z1 + z2 ). i + z1. z2
= ( -2- 3i – 2 + 3i). i + ( -2- 3i). ( -2 + 3i)
= -4i + 13
suy ra: |w| = √(-42 + 132) = √185
Đáp án cần chọn là:B
Câu 29: Biết phương trình z2 + az + b=0 ,
(a,b ∈ R) có một nghiệm phức là z1= 1 + 2i. Tìm a và b?
A.
B.
C.
D.
Lời giải:
Do z1 = 1 + 2i là nghiệm nên z2 = 1 -2i cũng là nghiệm của phương trình đã cho.
Ta có: (1)
Do z1, z2 là nghiệm của phương trình
z2 + az + b= 0 nên theo hệ thức Vi- et ta có:
(2)
Từ (1) và (2) ta có: ⇔
Đáp án cần chọn là:D
Câu 30: Biết z1 = 2- i là một nghiệm phức của phương trình z2 + bz + c = 0; (b,c ∈ R) , gọi nghiệm còn lại là z2. Tìm số phức w= bz1 + cz2
A.w= 18 – i
B.w= 18 + i.
C.w= 2- 9i
D.w= 2 + 9i .
Lời giải:
Do z1 = 2 – i là một nghiệm phức của phương trình z2 + bz + c = 0; (c,b ∈ R) nên
z2 =2 + i cũng là 1 nghiệm của phương trình đã cho.
Ta có: z1 = 2 – i là một nghiệm phức của phương trình z2 + bz + c = 0 nên ta có:
( 2- i)2 + b.(2- i) + c=0
⇔ 4 – 4i + i2 + 2b – bi + c = 0
⇔( 3 + 2b + c) – ( 4 + b) i= 0.
⇔ ⇔
khi đó:
w= bz1 + c.z2 = -4( 2- i) + 5. (2 + i) = 2 + 9i
Đáp án cần chọn là:D
Câu 31: Cho số thực a, b, c sao cho phương trình z3 + az2 + bz + c = 0 nhận z= 1 + i và z = 2 làm nghiệm. Khi đó tổng giá trị a + b + c là:
A. -2.
B. 2.
C. 4.
D. -4.
Lời giải:
Phương trình có nghiệm z = 2 nên thay z=2 vào phương trình ta được:
8 + 4a + 2b + c= 0 ( 1) .
Phương trình có nghiệm z= 1 + i nên thay vào phương trình ta được:
(1 + i)3 + a.(1 + i)2 + b( 1 + i) + c= 0
⇔ 1 + 3i + 3i2 + i3 + a. (1 + 2i + i2) + b(1 + i) + c=0
⇔ 1 + 3i – 3- i + 2ai + b + bi + c= 0
⇔( - 2 + b + c) + ( 2 + 2a + b).i = 0
⇔ . (2)
Từ (1) và (2) ta có hệ phương trình:
⇔ ⇔
Suy ra a + b + c= - 2 .
Đáp án cần chọn là:A
Câu 32: Biết hai số phức có tổng bằng 4 và tích bằng 5. Tổng môđun của hai số phức đó bằng:
A. 4
B.√10
C. 2√5
D.2√3
Lời giải:
Hai số phức cần tìm có tổng bằng 4 và tích bằng 5 nên chúng là nghiệm phương trình: z2 – 4z + 5= 0
Phương trình trên có ∆’= 22 – 5 = -1= i2
Suy ra hai số phức đó là
Vậy tổng môdun của số phức đó là:
|z1| + |z2| = 2√5
Đáp án cần chọn là:C
Câu 33: Biết phương trình z2 + mz + n = 0 (với m, n là các tham số thực) có một nghiệm là
z = 1 + i. Tính môđun của số phức w= m + ni .
A. 4√2
B. 4
C. 2√2
D. 16.
Lời giải:
Thay z = 1 + i vào phương trình, ta được :
(1 + i)2 + m. (1 + i) + n= 0
⇔ 1 + 2i + i2 + m + mi + n= 0
⇔ (m + n) + ( m + 2).i = 0
⇔ ⇔ .
Suy ra w= - 2 + 2i nên mô dun của w là |w| = √8 = 2√2 .
Đáp án cần chọn là:C
Câu 34: Cho phương trình z2 – mz + 2m – 1=0 trong đó m là tham số phức. Giá trị của m để phương trình có hai nghiệm z1, z2 thỏa mãn
z12 + z22 là:
A. m=-2-2√2i.
B. m=2 + 2√2i .
C. 2-2√2i
D. 2 ± 2√2i
Lời giải:
Theo Viet, ta có:
⇔
Theo giả thiết ta có:
z12 + z22= -10 ⇔(z1 + z2)2 - 2z1z2 = -10
⇔ m2 - 2( 2m- 1) = - 10
⇔ m2 – 4m + 12= 0
Có ∆’= (-2)2 – 12 = - 8 = 8i2
Do đó phương trình đã cho có 2 nghiệm là :
Đáp án cần chọn là:D
Câu 35: Cho phương trình z2 + mz -6i = 0. Để phương trình có tổng bình phương hai nghiệm bằng 5 thì m có dạng ±(a + bi) (a,b ≠R) . Giá trị a + 2b là:
A. 0
B. 1
C. - 2
D. - 1
Lời giải:
Gọi z1, z2 là hai nghiệm của phương trình đã cho
Theo Vi -et, ta có:
Theo bài cho, tổng bình phương hai nghiệm bằng 5. Ta có:
z12 + z22 = 5 ⇔ (z1 + z22)-2z1.z2 = 5
⇔ m2 + 12i = 5 ⇔ m2 = (3- 2i)2
⇔ m = ± (3-2i)
Do đó,
a= 3; b = - 2 và a + 2b= 3 + 2.(-2) = -1
Đáp án cần chọn là:D
Câu 36: Cho z1, z2 là hai số phức thỏa mãn
z2 – 4z + 5= 0 . Tính giá trị biểu thức
P= ( z1 – 1)2017 + ( z2 – 1)2017 .
A. P=0
B. P= 21008.
C. P=21009 .
D. P= 2.
Lời giải:
Xét phương trình z2 – 4z + 5= 0 có
∆ = 16 – 4.5.1= - 4 = (2i)2.
Do đó phương trình có hai nghiệm phức:
Suy ra P=( z1 – 1)2017 + ( z2 – 1)2017
=( 1 – i)2017 + ( 1 + i)2017
= (1-i)[(1-i)2]1008 + (1 + i)[(1 + i)2]1008
= (1-i).(-2i)1008 + (1 + i).(2i)1008
= (1-i).(-2i)1008.(i4)252 + (1 + i).(2i)1008(i4)252
= (1-i).21008 + (1 + i).22018
= 21008 + 21008 = 2 1019
Đáp án cần chọn là:C
Câu 37: Cho số phức w và hai số thực a, b. Biết rằng w + i và 2w – 1 là hai nghiệm của phương trình z2 + az + b =0 . Tính tổng S= a + b?
A.
B.
C.
D.
Lời giải:
Giả sử w= x + yi, (x,y ∈ R) .
Do w + i và 2w – 1 là hai nghiệm của phương trình z2 + az + b = 0 nên suy ra
(w + i) và (2w – 1) là hai số phức liên hợp. Nên ta có:
2w - 1= = w− -i
2(x + yi)-1 = x-yi-i
⇔ ⇔ (1)
Theo hệ thức Viet, ta lại có:
(2)
Từ (1) và (2) ta suy ra: ⇒ a + b = -5/9
Đáp án cần chọn là:D
Câu 38: Cho hai số thực b và c, (c > 0). Kí hiệu A, B là hai điểm biểu diễn hai nghiệm phức của phương trình z2 + 2bz + c=0 trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).
A. b2 = 2c.
B. c = 2b2
C. b = c.
D. b2 = c
Lời giải:
Xét phương trình z2 + 2bz + c = 0
có ∆’= b2 – c.
+ Trường hợp 1.Nếu Δ ≥0 ⇔ b2 + c ≥ 0
Khi đó phương trình đã cho có hai nghiệm thực phân biệt.
Do đó,2 điểm A và B biểu diễn hai nghiệm của phương trình đã cho nằm trên trục hoành
=> Ba điểm O, A, B thẳng hàng nên loại trường hợp này.
+ Trường hợp 2. Nếu ∆’ < 0 thì b2 < c.
Khi đó, hai nghiệm là
Tọa độ hai điểm A và B biểu diễn hai nghiệm của phương trình đã cho là
A(-b;- );B(-b; )
Nhận xét tam giác OAB luôn cân tại O.
Do đó, để tam giác OAB vuông thì phải vuông tại O
⇔ OA→.OB→ = 0 ⇔ b2 - (c-b2) = 0 ⇔ c = 2b2
Đáp án cần chọn là:B
Câu 39:Trong C , phương trình |z| + z = 2 + 4i có nghiệm là:
A. z = -3 + 4i
B. z = -2 + 4i
C. z = -4 + 4i
D. z = -5 + 4i
Lời giải:
Đặt z = a + bi khi đó |z| =
Thay vào phương trình:
Đáp án cần chọn là:A
Câu 40:Hai giá trị x1 = a + bi ; x2 = a - bi là hai nghiệm của phương trình nào :
A. x2 + 2ax + a2 + b2 = 0
B. x2 + 2ax + a2 - b2 = 0
C. x2 - 2ax + a2 + b2 = 0
D. x2 - 2ax + a2 - b2 = 0
Lời giải:
Áp dụng định lý đảo Viet :
Do đó x1 ; x2 là hai nghiệm của phương trình:
x2 - Sx + P = 0 hay . x2 - 2ax + a2+ b2 = 0
Đáp án cần chọn là:C
Câu 41: Trong C , phương trình z4 - 1 = 0 có nghiệm là:
A ±1;±2i
B. ±2;±2i
C. ±3; ±4i
D. ±1;±i
Lời giải:
Đáp án cần chọn là:D
Câu 42:Phương trình z3 = 8 có bao nhiêu nghiệm phức với phần ảo âm?
A. 1
B. 2
C. 3
D. 0
Lời giải:
Do đó phương trình chỉ có một nghiệm phức có phần ảo âm.
Đáp án cần chọn là:A
Câu 43:Tập nghiệm trong C của phương trình z3 + z2 + z + 1 = 0 là:
A. {-i ; i ; 1 ; -1}
B. {-i ; i ; 1 }
C. {-i ; -1}
D . {-i ; i ; -1}
Lời giải:
Đáp án cần chọn là:A
Câu 44: Phương trình (2 + i) z2 + az + b = 0 có hai nghiệm là 3 + i và 1 - 2i. Khi đó a = ?
A. -9 - 2i
B. 15 + 5i
C. 9 + 2i
D. 15 - 5i
Lời giải:
Theo Viet, ta có:
(3 + i) + (1 - 2i) = 4 - i
Đáp án cần chọn là:A
Câu 45:Trên tập hợp số phức, phương trình z2 + 7z + 15 = 0 có hai nghiệm z1;z2. Giá trị biểu thức z1 + z2 + z1z2 là:
A. –7
B. 8
C. 15
D. 22
Lời giải:
Đáp án cần chọn là:B
Câu 46:Trên tập số phức, cho phương trình sau: (z + i)4 + 4z2 = 0 . Có bao nhiêu nhận xét đúng trong số các nhận xét sau?
1. Phương trình vô nghiệm trên trường số thực R .
2. Phương trình vô nghiệm trên trường số phức C .
3. Phương trình không có nghiệm thuộc tập số thực.
4. Phương trình có bốn nghiệm thuộc tập số phức.
5. Phương trình chỉ có hai nghiệm là số phức.
6. Phương trình có hai nghiệm là số thực
A. 0
B. 1
C. 3
D. 2
Lời giải:
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
Đáp án cần chọn là:D
Câu 47:Giả sử z1;z2 là hai nghiệm của phương trình z2 - 2z + 5 = 0 và A, B là các điểm biểu diễn của z1;z2 . Tọa độ trung điểm I của đoạn thẳng AB là:
A.I(1;1)
B.I(-1;0)
C. I(0;1)
D.I(1;0)
Lời giải:
z2 - 2z + 5 = 0 <=> (z-1)2 + 4 = 0 <=> z = 1 ± 2i
=> A (1;2); B (1;-2)
Do đó tọa độ trung điểm I của đoạn thẳng AB là I(1;0).
Đáp án cần chọn là:D
Câu 48:Trong tập số phức, giá trị của m để phương trình bậc hai z2 + mz + i = 0 có tổng bình phương hai nghiệm bằng -4i là:
A.±(1-i)
B.1-i
C.±(1+i)
D. -1-i
Lời giải:
Gọi z1;z2 là hai nghiệm của phương trình.
Theo Viet, ta có:
Đáp án cần chọn là:A
Câu 49:Cho phương trình z2 - mz + 2m - 1 = 0 trong đó m là tham số phức. Giá trị của m để phương trình có hai nghiệm z1;z2 thỏa mãn z12 + z22 = 10 là:
A. m = 2 ± 2√2i
B. m = 2 + 2√2i
C. m = 2 - 2√2i
D. m = -2 - 2√2i
Lời giải:
Theo Viet, ta có:
Đáp án cần chọn là:A
Câu 50: Gọi z1;z2 là hai nghiệm của phương trình z2 + 2z + 8 = 0, trong đó z1 có phần ảo dương. Giá trị của số phức là:
A. 12 + 6i
B. 10
C. 8
D. 12 - 6i
Lời giải:
Đáp án cần chọn là:C
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.