Luyện tập 2 trang 87 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

136

Với giải Luyện tập 2 trang 87 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 34: Ba trường hợp đồng dạng của hai tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Luyện tập 2 trang 87 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

Luyện tập 2 trang 87 Toán 8 Tập 2: Cho ΔA'B'C' ∽ ΔABC. Trên tia đối của các tia CB, C'B' lần lượt lấy các điểm M, M' sao cho MCMB=M'C'M'B'. Chứng minh rằng ΔA'B'M' ∽ ΔABM.

Lời giải:

Luyện tập 2 trang 87 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

 MCMB=M'C'M'B' . Suy ra MBBCMB=M'B'B'C'M'B'

Suy ra 1BCMB=1B'C'M'B' . Do đó, BCMB=B'C'M'B', suy ra B'C'BC=M'B'MB. (1)

Vì ΔA′B′C′ ∽ ΔABC. Suy ra B^=B'^ và A'B'AB=B'C'BC. (2)

Từ (1) và (2) suy ra M'B'MB=A'B'AB.

Xét tam giác ABM và tam giác A'B'M' có:

M'B'MB=A'B'AB  B^=B'^ (chứng minh trên).

Do đó ΔABM ∽ ΔA′B′M′ (c.g.c).

Đánh giá

0

0 đánh giá