Bài 9 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

180

Với giải Bài 9 trang 136 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài tập ôn tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Bài 9 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

Bài 9 trang 136 Toán 8 Tập 2: Cho tam giác ABC. Các đường trung tuyến AF, BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của BG và CG.

a) Chứng minh rằng tứ giác DEKI là hình bình hành.

b) Biết AF = 6 cm. Tính độ dài các đoạn thẳng DI và EK.

Lời giải:

Bài 9 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

a) Xét tam giác ABC có:

CD là đường trung tuyến của tam giác ABC nên D là trung điểm của AB

BE là đường trung tuyến của tam giác ABC nên E là trung điểm của AC

Do đó, DE là đường trung bình của tam giác ABC.

Suy ra DE // BC và DE=12BC (1).

Tương tự, có IK là đường trung bình của tam giác GBC.

Suy ra IK // BC và IK=12BC (2).

Từ (1) và (2), suy ra DE // IK và DE = IK.

Vậy DEKI là hình bình hành.

b) Có điểm G là trọng tâm của tam giác ABC.

Suy ra AG = 23AF =23.6 = 4 cm.

Lại có E và K lần lượt là trung điểm của AC và CG nên EK là đường trung bình của tam giác CAG, do đó EK = 12AG = 12.4 = 2 cm.

Vì DEKI là hình bình hành nên DI = EK = 2 cm.

Đánh giá

0

0 đánh giá