Bài 11 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

241

Với giải Bài 11 trang 136 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài tập ôn tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Bài 11 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

Bài 11 trang 136 Toán 8 Tập 2: Cho tam giác ABC cân tại đỉnh A. Hai đường phân giác BE và CF của tam giác ABC cắt nhau tại điểm I.

a) Chứng minh ΔBIC ∽ ΔEIF.

b) Chứng minh FB2 = FI ∙ FC.

c) Cho biết AB = 6 cm, BC = 3 cm. Tính EF.

Lời giải:

Bài 11 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

a) Do BE là đường phân giác của góc B nên ta có EAEC=BABC (1).

Tương tự với đường phân giác CF ta có FAFB=CACB (2).

Do tam giác ABC cân tại A nên BA = AC, kết hợp với (1) và (2) suy ra EAEC=FAFB

Do đó, theo định lí Thalès đảo ta có EF // BC. Suy ra ∆BIC ∽ ∆EIF.

b) Ta có ABE^=12ABC^ (do BE là đường phân giác của góc B)

BCF^=12ACB^ (do CF là đường phân giác của góc C)

ABC^=ACB^ (do tam giác ABC cân tại A).

Do đó, ABE^=BCF^.

Hai tam giác BFI và CFB có góc F chung và ABE^=BCF^ (chứng minh trên).

Do đó ∆BFI ∽ ∆CFB (g.g).

Suy ra FBFC=FIFBFB2=FIFC (đpcm).

c) Theo câu a) ta có FAFB=CACB hay FBFA=BCBA.

Ta có EF // BC (chứng minh trên), do đó

BCEF=ABAFBCEF=AF+FBAF=1+FBFA=1+BCBA=1+36=32.

Từ đó ta có 3FE=32FE=2 cm.

Đánh giá

0

0 đánh giá