Chứng minh rằng nếu a, b, c khác 0, a + b + c = 0 thì 1/ab+1/bc+1/ca=0

169

Với giải Bài tập 6.21 trang 10 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 23: Phép cộng và phép trừ phân thức đại số giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Chứng minh rằng nếu a, b, c khác 0, a + b + c = 0 thì 1/ab+1/bc+1/ca=0

Bài tập 6.21 trang 10 SBT Toán 8 Tập 2:

a) Chứng minh rằng nếu a, b, c ≠ 0, a + b + c = 0 thì 1ab+1bc+1ca=0.

b) Chứng minh rằng nếu x ≠ y, y ≠ z, z ≠ x thì:

1xyyz+1yzzx+1zxxy=0.

Lời giải:

a) Với a, b, c ≠ 0, ta có:

1ab+1bc+1ca

=cabc+aabc+babc

=a+b+cabc

Mà a + b + c = 0 nên ta suy ra: 1ab+1bc+1ca=0abc=0 (điều cần phải chứng minh).

b) Với x ≠ y, y ≠ z, z ≠ x, ta có:

1xyyz+1yzzx+1zxxy

=zxxyyzzx+xyxyyzzx+yzxyyzzx

=zx+xy+yzxyyzzx=0xyyzzx=0.

Vậy 1xyyz+1yzzx+1zxxy=0 (điều cần phải chứng minh).

Đánh giá

0

0 đánh giá