Với giải Bài 9.34 trang 59 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 35: Định lí Pythagore và ứng dụng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH. Biết rằng AB = 4 cm, hãy tính độ dài cạnh đáy BC và chiều cao AH
Bài 9.34 trang 59 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH. Biết rằng AB = 4 cm, hãy tính độ dài cạnh đáy BC và chiều cao AH.
Lời giải:
Vì tam giác ABC vuông cân tại A nên
AC = AB = 4 cm
Tam giác AHB vuông tại H có , suy ra tam giác AHB vuông cân tại H.
Nên AH = HB.
Tam giác AHC vuông tại H có , suy ra tam giác AHC vuông cân tại H.
Nên AH = HC.
Khi đó, HB = HC = AH.
Mà HB + HC = BC. Suy ra HB + HB = BC hay 2HB = BC.
Do đó, AH = HC = HB = BC.
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:
BC2 = AB2 + AC2 = 42 + 42 = 32.
Suy ra BC = = (cm).
Do đó, AH = BC = (cm).
Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 9.33 trang 59 SBT Toán lớp 8 Tập 2: Tính các độ dài x, y, z, t trong Hình 9.8
Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 34: Ba trường hợp đồng dạng của hai tam giác
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.