Cho hàm số f(x) = 4sin^2(2x - pi/3). Chứng minh rằng |f'(x)| ≤ 8 với mọi x  ℝ. Tìm x để f'(x) = 8

226

Với Giải Bài 9.13 trang 60 SBT Toán 11 Tập 2 trong Bài 32: Các quy tắc tính đạo hàm Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hàm số f(x) = 4sin^2(2x - pi/3). Chứng minh rằng |f'(x)| ≤ 8 với mọi x  ℝ. Tìm x để f'(x) = 8

Bài 9.13 trang 60 SBT Toán 11 Tập 2Cho hàm số f(x) = 4sin22x-π3. Chứng minh rằng |f'(x)| ≤ 8 với mọi x  ℝ. Tìm x để f'(x) = 8.

Lời giải:

+ Có Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8

Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8

Vì Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8 với mọi x  ℝ nên Cho hàm số f(x) = 4sin^2(2x-pi/3). Chứng minh rằng |f'(x)| nhỏ hơn hoặc bằng 8 với mọi x  ℝ .

Vậy |f'(x)| ≤ 8 với mọi x  ℝ.

+ Có f'(x) = 8 8sin4x2π3=8

sin4x2π3=1

4x2π3=π2+k2π (k  ℤ)

4x=7π6+k2π (k  ℤ)

x=7π24+kπ2 (k  ℤ).

Vậy f'(x) = 8 khi x=7π24+kπ2 với k  ℤ.

Đánh giá

0

0 đánh giá