Cho tam giác ABC có đường phân giác AD và AB = 6 cm, AC = 9 cm. Đường trung trực của đoạn AD cắt cạnh AC tại E

187

Với giải Bài 24 trang 68 SBT Toán 8 Tập 2 Cánh diều chi tiết trong Bài 4: Tính chất đường phân giác của tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho tam giác ABC có đường phân giác AD và AB = 6 cm, AC = 9 cm. Đường trung trực của đoạn AD cắt cạnh AC tại E

Bài 24 trang 68 SBT Toán 8 Tập 2Cho tam giác ABC có đường phân giác AD và AB = 6 cm, AC = 9 cm. Đường trung trực của đoạn AD cắt cạnh AC tại E. Tính độ đài của đoạn thẳng DE.

Lời giải:

Cho tam giác ABC có đường phân giác AD và AB = 6 cm, AC = 9 cm

Ta có E nằm trên đường trung trực của đoạn AD nên EA = ED, do đó tam giác AED cân tại E.

Suy ra EDA^=EAD^.

Mà EAD^=DAB^ (do AD là đường phân giác của tam giác ABC)

Do đó EDA^=DAB^

Lại có hai góc EDA^, DAB^ở vị trí so le trong nên DE // AB.

Xét ∆ABC với DE // AB, ta có EDAB=CDCB (hệ quả của định lí Thalès)

Mặt khác, do AD là đường phân giác của góc BAC nên DCDB=ACAB=96=32

Nên DCDC+DB=33+2=35

Suy ra DCBC=35, do đó EDAB=35

Vậy DE=35AB=356=3,6 (cm).

Đánh giá

0

0 đánh giá