Hình thang ABCD ở Hình 39 có AB // CD, AB < CD, . Hai đường chéo AC và BD cắt nhau tại G

124

Với giải Bài 41 trang 75, 76 SBT Toán 8 Tập 2 Cánh diều chi tiết trong Bài 7: Trường hợp đồng dạng thứ hai của tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Hình thang ABCD ở Hình 39 có AB // CD, AB < CD, . Hai đường chéo AC và BD cắt nhau tại G

Bài 41 trang 75, 76 SBT Toán 8 Tập 2Hình thang ABCD ở Hình 39 có AB // CD, AB < CD, ABD^=90°. Hai đường chéo AC và BD cắt nhau tại G. Điểm E nằm trên đường vuông góc với AC tại C thỏa mãn CE = AG và đoạn thẳng GE không cắt đường thẳng CD. Điểm F nằm trên đoạn thẳng DC và DF = GB. Chứng minh:

a) ∆FDG ᔕ ∆ECG;

b) ∆GDC ᔕ ∆GFE;

c) GFE^=90°.

Hình thang ABCD ở Hình 39 có AB // CD, AB < CD, góc ABD = 90 độ

Lời giải:

a) Xét ∆GDC với AB // CD, ta có BGGD=AGGC (hệ quả của định lí Thalès)

Do đó BGAG=GDGC.

Mặt khác AG = CE, BG = DF nên DFCE=GDGC.

Xét ∆FDG và ∆ECG có:

GDF^=GCE^=90° và DFCE=GDGC

Suy ra ∆FDG ᔕ ∆ECG (c.g.c).

b) Vì ∆FDG ᔕ ∆ECG (câu a) nên DGF^=CGE^ (hai góc tương ứng) và DGCG=GFGE (tỉ số đồng dạng)

Từ DGF^=CGE^ ta có DGF^+FGC^=CGE^+FGC^ hay DGC^=FGE^.

Từ DGCG=GFGE ta có GDGF=GCGE.

Xét ∆GDC và ∆GFE có:

DGC^=FGE^ và GDGF=GCGE (chứng minh trên)

Suy ra ∆GDC ᔕ ∆GFE (c.g.c).

c) Vì ∆GDC ᔕ ∆GFE (câu b) nên GDC^=GFE^ (hai góc tương ứng)

Mà GDC^=90° nên GFE^=90°.

Đánh giá

0

0 đánh giá