Cho tam giác ABC có AB = 2 cm, AC = 3 cm, BC = 4 cm

131

Với giải Bài 43* trang 76 SBT Toán 8 Tập 2 Cánh diều chi tiết trong Bài 7: Trường hợp đồng dạng thứ hai của tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho tam giác ABC có AB = 2 cm, AC = 3 cm, BC = 4 cm

Bài 43* trang 76 SBT Toán 8 Tập 2Cho tam giác ABC có AB = 2 cm, AC = 3 cm, BC = 4 cm. Chứng minh: BAC^=ABC^+2BCA^.

Lời giải:

Cho tam giác ABC có AB = 2 cm, AC = 3 cm, BC = 4 cm

Trên đoạn thẳng BC lấy điểm D sao cho BD = 1 cm.

Suy ra CD = BC ‒ BD = 4 ‒ 1 = 3 cm.

Ta có: BDBA=12; ABCB=24=12nên BDBA=ABCB=12.

Xét ∆ABD và ∆CBA có:

ABC^ là góc chung và BDBA=ABCB

Suy ra ∆ABD ᔕ ∆CBA (c.g.c).

Do đó BAD^=BCA^ (hai góc tương ứng) (1).

Tam giác ADC có CD = CA = 3 cm nên là tam giác cân tại C, do đó DAC^=ADC^ (2).

Từ (1) và (2), ta có:

BAC^=BAD^+DAC^=BCA^+ADC^.

Mặt khác, ADC^ là góc ngoài tại đỉnh D của ∆ABD nên ADC^=BAD^+ABD^.

Do đó BAC^=BCA^+BAD^+ABD^ = BCA^+BCA^+ABC^=ABC^+2BCA^

Vậy BAC^=ABC^+2BCA^.

Đánh giá

0

0 đánh giá