Tại vòng chung kết của một trò chơi trên truyền hình, có 100 khán giả

1.2 K

Với giải Vận dụng trang 23 Toán 10 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3. Các phép toán trên tập hợp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Tại vòng chung kết của một trò chơi trên truyền hình, có 100 khán giả

Vận dụng trang 23 Toán 10 Tập 1: Tại vòng chung kết của một trò chơi trên truyền hình, có 100 khán giả tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rằng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh. Có bao nhiêu khán giả đã tham gia bình chọn? Có bao nhiêu khán giả không tham gia bình chọn?

Phương pháp giải:

Kí hiệu A, B lần lượt là tập hợp các khán giả bình chọn cho thí sinh A và thí sinh B.

Sử dụng biểu đồ Ven, minh họa tập hợp các khán giả đã tham gia bình chọn (AB) và các khán giả không tham gia bình chọn.

Lời giải 

Gọi A, B lần lượt là tập hợp các khán giả bình chọn cho thí sinh A và thí sinh B.

Theo giả thiết, n(A)=85,n(B)=72,n(AB)=60

 Vận dụng trang 23 SGK Toán 10 Tập 1 | Chân trời sáng tạo (ảnh 1)

Nhận thấy rằng, nếu tính tổng n(A)+n(B) thì ta được số khán giả đã tham gia bình chọn, nhưng số khán giả bình chọn cho cả hai thí sinh được tính hai lần. Do đó, số khán giả đã tham gia bình chọn là:

n(AB)=n(A)+n(B)n(AB)=85+7260=97

Như vậy trong hội trường 100 khán giả, có 97 khán giải đã tham gia bình chọn, còn lại số khán giả không tham gia bình chọn là: 10097=3 (khán giả).

Đánh giá

0

0 đánh giá