Xác định các tập hợp A hợp B trong mỗi trường hợp sau: A=x thuộc R

817

Với giải Bài 2 trang 25 Toán 10 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3. Các phép toán trên tập hợp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Xác định các tập hợp A hợp B trong mỗi trường hợp sau: A=x thuộc R

Bài 2 trang 25 Toán 10 Tập 1: Xác định các tập hợp AB trong mỗi trường hợp sau:

a) A={xR|x22=0},B={xR|2x1<0}

b) A={(x;y)|x,yR,y=2x1},B={(x;y)|x,yR,y=x+5}

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

Phương pháp giải

a) AB={x|xA và xB}

b) AB={(x;y)|x,yR,y=2x1,y=x+5}

Lời giải 

a) Phương trình x22=0 có hai nghiệm là 2 và 2, nên A={2;2}

Tập hợp B={xR|2x1<0} là tập hợp các số thực x<12

Từ đó AB={2}.

b) AB={(x;y)|x,yR,y=2x1,y=x+5}

Tức là ABlà tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: {y=2x1y=x+5

{2x1=x+5y=2x1{3x=6y=2x1{x=2y=3

Vậy AB={(2;3)}.

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

AB là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.

Một tứ giác bất kì thuộc AB thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)

Do đó AB là tập hợp các hình vuông.

 

Đánh giá

0

0 đánh giá