Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song

457

Với Giải SBT Toán 10 Tập 2 trong Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng Sách bài tập Toán lớp 10 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10.

Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song

Bài 33 trang 81 SBT Toán 10Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song với đường thẳng x – 2y + 3 = 0?

A. Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song;

B. Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song;

C. Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song;

D. Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song.

Lời giải:

Gọi d là đường thẳng cần tìm song song với đường thẳng x – 2y + 3 = 0

Do đó d có vectơ pháp tuyến là: n=(1;-2).

Do đó d có vectơ chỉ phương là u=k(2;1).

Như vậy chỉ có phương án A và B là thỏa mãn có vectơ chỉ phương là u=k(2;1). Do đó đáp án C và D sai.

Xét Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song đi qua điểm (-1; 1). Mà điểm (-1; 1) thuộc đường thẳng x – 2y + 3 = 0 vì -1 – 2.1 + 3 = 0 = 0 (luôn đúng).

Do đó đường thẳng ở câu A trùng với đường thẳng x – 2y + 3 = 0.

Xét Phương trình nào dưới đây là phương trình tham số của một đường thẳng song song đi qua điểm (1; -1).

Thay x = 1 và y = - 1 vào phương trình đường thẳng x – 2y + 3 = 0, ta được: 1 – 2.(-1) + 3 = 0 ( vô lí). Do đó đường thẳng ý b song song với đường thẳng x – 2y + 3 = 0.

Vậy chọn đáp án B.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều với cuộc sống hay, chi tiết khác:

Bài 34 trang 81 SBT Toán 10Phương trình nào dưới đây là phương trình tham số của một đường thẳng vuông góc

Bài 35 trang 81 SBT Toán 10Đường thẳng ∆ đi qua điểm M(- 1; 2) và song song với đường thẳng d: 2x – y – 5 = 0 có phương trình tổng quát là:

Bài 36 trang 81 SBT Toán 10Đường thẳng ∆ đi qua điểm M(3; - 4) và vuông góc với đường thẳng d: x – 3y + 1 = 0 Bài 37 trang 81 SBT Toán 10Cho ∆1: x – 2y + 3 = 0 và ∆2: – 2x – y + 5 = 0. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:

Bài 38 trang 82 SBT Toán 10Cho :Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t' và :Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:

Bài 39 trang 82 SBT Toán 10Khoảng cách từ điểm M(5; - 2) đến đường thẳng ∆: - 3x + 2y + 6 = 0 là:

Bài 40 trang 82 SBT Toán 10Xét vị trí tương đối của mỗi cặp đường thẳng sau:

a) d1: 2x – 3y + 5 = 0 và d2: 2x + y – 1 = 0;

Bài 41 trang 82 SBT Toán 10Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau:

Bài 42 trang 82 SBT Toán 10Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau:

a) A(- 3; 1) và ∆1: 2x + y – 4 = 0;

Bài 43 trang 82 SBT Toán 10Cho hai đường thẳng song song ∆1: ax + by + c = 0 và ∆2: ax + by + d = 0.

Bài 44 trang 82 SBT Toán 10Cho hai đường thẳng ∆1: mx – 2y – 1 = 0 và ∆2: x – 2y + 3 = 0.

Bài 45 trang 82 SBT Toán 10Cho ba điểm A(- 2; 2), B(4; 2), C(6; 4). Viết phương trình đường thẳng ∆ đi qua B

Bài 46 trang 83 SBT Toán 10Có hai tàu điện ngầm A và B chạy trong nội đô thành phố cùng xuất phát từ hai ga

 

Đánh giá

0

0 đánh giá