Với giải Câu hỏi trang 30 Toán 10 Tập 1 Kết nối tri thức trong Bài 4: Hệ bất phương trình bậc nhất hai ẩn học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Toán 10 Kết nối tri thức trang 30 Bài 4: Hệ bất phương trình bậc nhất hai ẩn
Câu hỏi vận dụng trang 30 Toán lớp 10: Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y.
a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương
trình rồi xác định miền nghiệm của hệ đó.
b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.
c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó đề lợi nhuận thu được là lớn nhất.
Phương pháp giải:
a) Bước 1: Lập bảng thể hiện vốn và lợi nhuận của mỗi loại máy.
Bước 2: Dựa vào các điều kiện sau để lập bất phương trình:
+ Số lượng là số tự nhiên
+ Điều kiện vốn ban đầu
+ Nhu cầu hàng tháng
Bước 3: Xác định miền nghiệm.
b) Lợi nhuận hàng tháng bằng lợi nhuận bán x máy loại A và y máy loại B.
c) Bước 1: Xác định giá trị của F tại các điểm thuộc miền đa giác biểu diễn miền nghiệm của hệ bất phương trình ở câu a.
Bước 2: Giá trị lớn nhất của F là số lớn nhất trong các số tìm được ở bước 1.
Lời giải:
a) Bước 1: Ta có:
|
Loại A |
Loại B |
Giá mua vào |
10 triệu đồng/1 máy |
20 triệu đồng/1 máy |
Lợi nhuận |
2,5 triệu đồng/1 máy |
4 triệu đồng/1 máy |
Bước 2: Lập hệ bất phương trình
Vì số lượng máy là số tự nhiên nên ta có
Vốn nhập vào x máy loại A và y máy loại B là (triệu đồng)
4 tỉ đồng=4000 (triệu đồng)
Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có bất phương trình
Vì tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy nên ta có .
Vậy ta có hệ bất phương trình
Bước 3: Xác định miền nghiệm
Miền nghiệm là tứ giác OABC với tọa độ các đỉnh này là O(0;0), A(250;0), B(100;150), C(0;200)
b) Lợi nhuận hàng tháng là F(x;y)=2,5x+4y(triệu đồng)
c) Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình
Ta có F(0;0)=0, F(250;0)=2,5.250+4.0=625
F(100;150)=2,5.100+4.150=850
F(0;200)=2,5.0+4.200=800
Giá trị lớn nhất là F(100;150)=850.
Vậy cửa hàng cần đầu tư kinh doanh 100 máy A và 150 máy B.
BÀI TẬP
Bài 2.4 trang 30 lớp 10: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
a)
b)
c)
d)
Phương pháp giải:
Bước 1: Xác định số lượng các ẩn của từng bất phương trình, nếu số ẩn vượt quá 2 ẩn thì đó không là hệ bất phương trình bậc nhất hai ẩn.
Bước 2: Nếu bất phương trình có số mũ ở một ẩn lớn hơn 1 thì hệ đó không là hệ bất phương trình bậc nhất hai ẩn.
Lời giải:
a) Ta thấy hệ gồm hai bất phương trình bậc nhất hai ẩn là và
=> Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Ta thấy hệ không là hệ bất phương trình bậc nhất hai ẩn vì không là bất phương trình bậc nhất hai ẩn (chứa )
c) Ta thấy hệ không là hệ bất phương trình bậc nhất hai ẩn vì không là bất phương trình bậc nhất hai ẩn (có 3 ẩn)
d) Ta có:
Đây là hệ bất phương trình bậc nhất hai ẩn và gồm hai bất phương trình bậc nhất hai ẩn là và
Chú ý: Bất phương trình dạng ax<0 cũng là bất phương trình bậc nhất hai ẩn vì ở đây ta có hệ số b=0.
a)
b)
c)
Phương pháp giải:
Xác định miền nghiệm của từng bất phương trình bậc nhất hai ẩn.
Miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho.
Lời giải:
a) Xác định miền nghiệm của bất phương trình
+ Vẽ đường thẳng d:
+ Vì nên tọa độ điểm O(0;0) không thỏa mãn bất phương trình
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ d không chứa gốc tọa độ O.
Miền nghiệm của bất phương trình là nửa mặt phẳng bờ Oy chứa điểm (1;0) không kể trục Oy.
Miền nghiệm của bất phương trình là nửa mặt phẳng bờ Ox chứa điểm (0;-1) không kể trục Ox.
Khi đó miền nghiệm của hệ bất phương trình đã cho là miền màu vàng (Không kể đoạn thẳng AB và các trục tọa độ).
b) Miền nghiệm của bất phương trình là nửa mặt phẳng bờ Oy chứa điểm (1;0) kể cả trục Oy.
Miền nghiệm của bất phương trình là nửa mặt phẳng bờ Ox chứa điểm (0;1) kể cả trục Ox.
Xác định miền nghiệm của bất phương trình
+ Vẽ đường thẳng d:
+ Vì nên tọa độ điểm O(0;0) thỏa mãn bất phương trình
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ d chứa gốc tọa độ O.
Vậy miền nghiệm của hệ bất phương trình đã cho là miền tam giác OAB (kể cả các đoạn thẳng OA, OB, AB).
c) Miền nghiệm của bất phương trình là nửa mặt phẳng bờ Oy chứa điểm (1;0) kể cả trục Oy.
Xác định miền nghiệm của bất phương trình
+ Vẽ đường thẳng d:
+ Vì nên tọa độ điểm O(0;0) không thỏa mãn bất phương trình .
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ d không chứa gốc tọa độ O.
Xác định miền nghiệm của bất phương trình
+ Vẽ đường thẳng d:
+ Vì nên tọa độ điểm (1;0) không thỏa mãn bất phương trình
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ d’ không chứa điểm (1;0).
Vậy miền nghiệm của hệ bất phương trình đã cho là miền màu nâu (không kể d và d’)
Bài 2.6 trang 30 Toán lớp 10: Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất là 1,6 kg thịt bò và 1,1 kg thịt lợn, giá tiền 1 kg thịt bò là 250 nghìn đồng, 1 kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn.
Lời giải a
a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương
trình rồi xác định miền nghiệm của hệ đó.
Phương pháp giải:
Dựa vào:
+ Số đơn vị tối thiểu của Protein
+ Số đơn vị tối thiểu của Lipit
+ Số kg tối đa thịt bò
+ Số kg tối đa thịt lợn.
Lời giải:
|
Thịt bò |
Thịt lợn |
Protein |
800/1kg |
600/1kg |
Lipit |
200/1kg |
400/1kg |
a) Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn.
Số lượng thịt bò và thịt lợn phải là một số không âm nên ta có: .
Một gia đình cần ít nhất 900 đơn vị protein trong thức ăn mỗi ngày nên ta có:
Một gia đình cần ít nhất 400 đơn vị protein trong thức ăn mỗi ngày nên ta có:
Vì gia đình này chỉ mua nhiều nhất là 1,6 kg thịt bò và 1,1 kg thịt lợn nên ta có:
và .
Vậy ta có hệ:
Miền nghiệm của hệ là tứ giác ABCD với
A(1,6;0,2) (giao của d’ và đường thẳng x=1,6)
B(1,6;1,1) (giao của đường thẳng x=1,6 và đường thẳng y=1,1)
C(0,3;1,1) (giao của d và đường thẳng y=1,1)
D(0,6;0,7) (giao của d và d’)
b) Vì số tiền mỗi kg thịt bò và thịt lợn lần lượt là 250 nghìn đồng và 160 nghìn đồng nên ta có
(nghìn đồng)
c) Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình
Ta có F(1,6;0,2)=250.1,6+160.0,2=432.
F(1,6;1,1)=250.1,6+160.1,1=576
F(0,3;1,1)=251
F(0,6;0,7)=262
Giá trị nhỏ nhất là F(0,3;1,1)=251.
Vậy để chi phí ít nhất thì cần mua 0,3kg thịt bò và 1,1 thịt lợn.
Chú ý: Đơn vị của F phải là nghìn đồng.
Lời giải b
b) Gọi F (nghìn đồng) là số tiền phải trả cho x kilôgam thịt bò và y kilôgam thịt lợn. Hãy
biểu diễn F theo x và y.
Phương pháp giải:
Dựa vào số tiền mỗi kg thịt lợn và thịt bò để lập biểu thức.
Lời giải:
Vì số tiền mỗi kg thịt bò và thịt lợn lần lượt là 250 nghìn đồng và 160 nghìn đồng nên ta có
(nghìn đồng)
Lời giải c
c) Tìm số kilôgam thịt mỗi loại mà gia đình cần mua để chi phí là ít nhất.
Phương pháp giải:
Bước 1: Xác định giá trị của F tại các điểm thuộc miền đa giác biểu diễn miền nghiệm của hệ bất phương trình ở câu a.
Bước 2: Giá trị lớn nhất của F là số lớn nhất trong các số tìm được ở bước 1.
Lời giải:
Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình
Ta có F(1,6;0,2)=250.1,6+160.0,2=432.
F(1,6;1,1)=250.1,6+160.1,1=576
F(0,3;1,1)=251
F(0,6;0,7)=262
Giá trị nhỏ nhất là F(0,3;1,1)=251.
Vậy để chi phí ít nhất thì cần mua 0,3kg thịt bò và 1,1 thịt lợn.
Xem thêm các bài giải Toán 10 Kết nối tri thức hay, chi tiết khác:
Hoạt động 1 trang 26 Toán 10: Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hoà loại hai chiều và một chiều mà cửa hàng cần nhập...
Luyện tập 2 trang 28 Toán 10: Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:...
Hoạt động 3 trang 28 Toán 10: Xét biểu thức F(x, y) = 2x + 3y với (x; y) thuộc miền tam giác OAB ở HĐ2. Toạ độ ba đình là O(0, 0), A(150, 0) và B(0; 150) (H.2.5)...
Câu hỏi vận dụng trang 30 Toán 10: Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng...
Bài 2.4 trang 30 Toán 10: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Bài 2.6 trang 30 Toán 10: Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit....
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.