Toán 10 Kết nối tri thức trang 44: Bài tập cuối chương 3

221

Với giải Câu hỏi trang 44 Toán 10 Tập 1 Kết nối tri thức trong Bài tập cuối chương 3 học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Kết nối tri thức trang 44: Bài tập cuối chương 3

Bài 3.12 trang 44 Toán lớp 10: Cho tam giác ABC có B^=135o. Khẳng định nào sau đây là đúng?

Lời giải a

A. S=12ca

B. S=24ac

C. S=24bc

D. S=24ca

Phương pháp giải:

Diện tích tam giác ABC: S=12ac.sinB

Lời giải:

Diện tích tam giác ABC: S=12ac.sinB

Mà B^=135osinB=sin135o=22.

S=12ac.22=24.ac

Chọn D

Lời giải b

A. R=asinA

B. R=22b

C. R=22c

D. R=22a

Phương pháp giải:

Định lí sin: R=asinA=bsinB=csinC

Lời giải:

Theo định lí sin, ta có: asinA=bsinB=csinC=R

A. R=asinA đúng

B. R=22b

Mà sinB=22R=bsinB=b22=b2

Vậy B sai.

C. R=22c (Loại vì không có dữ kiện về góc C nên không thể tính R theo c.)

D. R=22a (Loại vì không có dữ kiện về góc A nên không thể tính R theo a.)

Chọn A

Lời giải c

A. a2=b2+c2+2ab.

B. bsinA=asinB

C. sinB=22

D. b2=c2+a22cacos135o.

Phương pháp giải:

Định lí sin: R=asinA=bsinB=csinC

Định lí cos: b2=c2+a22ca.cosB;a2=c2+b22bc.cosA

Lời giải:

A. a2=b2+c2+2ab. (Loại)

Vì: Theo định lí cos ta có: a2=b2+c22bc.cosA

Không đủ dữ kiện để suy ra a2=b2+c2+2ab.

B. bsinA=asinB (Loại)

Theo định lí sin, ta có: asinA=bsinBbsinA=asinB

C. sinB=22(sai vì theo câu a, sinB=22)

D. b2=c2+a22cacos135o.

Theo định lý cos ta có:

b2=c2+a22ca.cosB (*)

Mà B^=135ocosB=cos135o.

Thay vào (*) ta được: b2=c2+a22cacos135o

=> D đúng.

Chọn D

Bài 3.13 trang 44 Toán lớp 10: Cho tam giác ABC. Khẳng định nào sau đây là đúng?

Lời giải a

A. S=abc4r

B. r=2Sa+b+c

C. a2=b2+c2+2bccosA

D. S=r(a+b+c)

Phương pháp giải:

+) Định lí cos: a2=b2+c22bccosA

+) Công thức tính diện tích: S=pr=abc4R

Lời giải:

Bài 3.13 trang 44 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

a) Chọn đáp án B

A. S=abc4r

Ta có: S=abc4R. Mà r<Rnên suy ra S=abc4R<abc4r

Vậy A sai.

B. r=2Sa+b+c

Ta có: S=prr=Sp

p=a+b+c2r=Sp=Sa+b+c2=2Sa+b+c

Vậy B đúng

C. a2=b2+c2+2bccosA

Sai vì theo định lí cos ta có: a2=b2+c22bccosA

D. S=r(a+b+c)

Sai vì S=pr=r.a+b+c2

b) Chọn đáp án A

A. sinA=sin(B+C)

Ta có: A^+B^+C^=180o

B^+C^=180oA^sin(B+C)=sinA

Vậy A đúng.

B. cosA=cos(B+C)

Sai vì cos(B+C)=cosA(Do A^+B^+C^=180o)

C. cosA>0

Không đủ dữ kiện để kết luận.

Nếu 0o<A^<90o thì cosA>0

Nếu 90o<A^<180o thì cosA<0

D. sinA0

Ta có S=12bc.sinA>0

Mà b,c>0

sinA>0

Vậy D sai.

Lời giải b

A. sinA=sin(B+C)

B. cosA=cos(B+C)

C. cosA>0

D. sinA0

Phương pháp giải:

Giá trị lượng giác của hai góc bù nhau:

sinx=sin(180ox)cosx=cos(180ox)

Lời giải:

A. sinA=sin(B+C)

Ta có: (A^+C^)+B^=180o

sin(B+C)=sinA

=> A đúng.

B. cosA=cos(B+C)

Sai vì cos(B+C)=cosA

C. cosA>0 Không đủ dữ kiện để kết luận.

Nếu 0o<A^<90o thì cosA>0

Nếu 90o<A^<180o thì cosA<0

D. sinA0

Ta có S=12bc.sinA>0. Mà b,c>0

sinA>0

=> D sai.

Chọn A

B. TỰ LUẬN

Bài 3.14 trang 44 Toán lớp 10: Tính giá trị của các biểu thức sau:

a) M=sin45o.cos45o+sin30o

b) N=sin60o.cos30o+12.sin45o.cos45o

c) P=1+tan260o

d) Q=1sin2120ocot2120o.

Phương pháp giải:

Bảng giá trị lượng giác của các góc đặc biệt

Bài 3.14 trang 44 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Lời giải:

a) M=sin45o.cos45o+sin30o

Ta có: {sin45o=cos45o=22;sin30o=12

Thay vào M, ta được: M=22.22+12=24+12=1

b) N=sin60o.cos30o+12.sin45o.cos45o

Ta có: sin60o=32;cos30o=32;sin45o=22;cos45o=22

Thay vào N, ta được: N=32.32+12.22.22=34+14=1

c) P=1+tan260o

Ta có: tan60o=3

Thay vào P, ta được: Q=1+(3)2=4.

d) Q=1sin2120ocot2120o.

Ta có: sin120o=32;cot120o=13

Thay vào P, ta được: Q=1(32)2(13)2=13413=4313=1.

Bài 3.15 trang 44 Toán lớp 10: Cho tam giác ABC có B^=60o,C^=45o,AC=10. Tính a,R,S,r.

Phương pháp giải:

Định lí sin: asinA=bsinB=csinC=R

Lời giải:

Theo định lí sin: asinA=bsinB=csinC=R

+) Ta có: R=bsinB

Mà b=AC=10,B^=60o

R=10sin60o=1032=203=2033.

+) Mặt khác: R=asinAa=R.sinA

Mà R=2033,A^=180o(B^+C^)=180o(60o+45o)=75o

a=2033.sin75o11,154

+) Diện tích tam giác ABC là: S=12ab.sinC^ 12.11,154.10.sin60o48,3

+) Lại có: R=csinC

c=2033.sin45o=10638,165

p=a+b+c211,154+10+8,165214,66

r=Sp48,314,663,3

Bài 3.16 trang 44 Toán lớp 10: Cho tam giác ABC có trung tuyến AM. Chứng minh rằng:

a) cosAMB^+cosAMC^=0

b) MA2+MB2AB2=2.MA.MB.cosAMB^ và MA2+MC2AC2=2.MA.MC.cosAMC^

c) MA2=2(AB2+AC2)BC24 (công thức đường trung tuyến).

Phương pháp giải:

a) Giá trị lượng giác của hai góc bù nhau:

cosx=cos(180ox)

b) Định lí cos: a2=b2+c22bccosAcho tam giác tương ứng.

c) Suy ra từ b, lưu ý rằng: {cosAMC^+cosAMB^=0MB=MC=BC2

Lời giải:

 Toán lớp 10 Bài tập cuối chương III I Kết nối tri thức với cuộc sống (ảnh 1)

a) Ta có: AMB^+AMC^=180o

cosAMB^=cosAMC^

Hay cosAMB^+cosAMC^=0

b) Áp dụng định lí cos trong tam giác AMB ta có:

 AB2=MA2+MB22MA.MBcosAMB^MA2+MB2AB2=2MA.MBcosAMB^(1)

Tương tự, Áp dụng định lí cos trong tam giác AMB ta được:

AC2=MA2+MC22MA.MCcosAMC^MA2+MC2AC2=2MA.MCcosAMC^(2)

c) Từ (1), suy ra MA2=AB2MB2+2MA.MBcosAMB^

Từ (2), suy ra MA2=AC2MC2+2MA.MCcosAMC^

Cộng vế với vế ta được:

2MA2=(AB2MB2+2MA.MBcosAMB^)+(AC2MC2+2MA.MCcosAMC^)

2MA2=AB2+AC2MB2MC2+2MA.MBcosAMB^+2MA.MCcosAMC^

Mà: MB=MC=BC2 (do AM là trung tuyến)

2MA2=AB2+AC2(BC2)2(BC2)2+2MA.MBcosAMB^+2MA.MBcosAMC^

2MA2=AB2+AC22.(BC2)2+2MA.MB(cosAMB^+cosAMC^)

2MA2=AB2+AC2BC22

MA2=AB2+AC2BC222MA2=2(AB2+AC2)BC24 (đpcm)

Cách 2:

Theo ý a, ta có: cosAMC^=cosAMB^

Từ đẳng thức (1): suy ra cosAMB^=MA2+MB2AB22.MA.MB

 cosAMC^=cosAMB^=MA2+MB2AB22.MA.MB

Thế cosAMC^vào biểu thức (2), ta được:

MA2+MC2AC2=2MA.MC.(MA2+MB2AB22.MA.MB)

Lại có: MB=MC=BC2 (do AM là trung tuyến)

MA2+(BC2)2AC2=2MA.MB.(MA2+MB2AB22.MA.MB)MA2+(BC2)2AC2=(MA2+MB2AB2)MA2+(BC2)2AC2+MA2+(BC2)2AB2=02MA2AB2AC2+BC22=02MA2=AB2+AC2BC22MA2=AB2+AC2BC222MA2=2(AB2+AC2)BC24

Bài 3.17 trang 44 Toán lớp 10: Cho tam giác ABC. Chứng minh rằng:

a) Nếu góc A nhọn thì b2+c2>a2

b) Nếu góc A tù thì b2+c2<a2

c) Nếu góc A vuông thì b2+c2=a2

Phương pháp giải:

a) Nếu góc A nhọn thì cosA>0

b) Nếu góc A tù thì cosA<0

c) Nếu góc A vuông thì cosA=0

Định lí cos: a2=b2+c22bccosA

Lời giải:

Theo định lí cos ta có: a2=b2+c22bccosA

b2+c2a2=2bccosA(1)

 Bài 3.17 trang 44 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

a) Nếu góc A nhọn thì cosA>0

Từ (1), suy ra b2+c2>a2

b) Nếu góc A tù thì cosA<0

Từ (1), suy ra b2+c2<a2

c) Nếu góc A vuông thì cosA=0

Từ (1), suy ra b2+c2=a2

Đánh giá

0

0 đánh giá