Toán 10 Cánh Diều trang 66 Bài 1: Toạ độ của vecto

468

Với giải Câu hỏi trang 66 Toán 10 Tập 2 Cánh Diều trong Bài 1: Toạ độ của vecto giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Cánh Diều trang 66 Bài 1: Toạ độ của vecto

Bài 4 trang 66 Toán lớp 10 Tập 2: Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2; 3), B(– 1; 1), C(3; – 1).

a) Tìm toạ độ điểm M sao cho AM=BC .

b) Tìm toạ độ trung điểm N của đoạn thẳng AC. Chứng minh rằng BN=NM

Lời giải:

Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2; 3), B(– 1; 1), C(3; – 1). (ảnh 1)

Bài 5 trang 66 Toán lớp 10 Tập 2: Trong mặt phẳng toạ độ Oxy, cho điểm M(– 1; 3).

a) Tìm toạ độ điểm A đối xứng với điểm M qua gốc O.

b) Tìm toạ độ điểm B đối xứng với điểm M qua trục Ox.

c) Tìm toạ độ điểm C đối xứng với điểm M qua trục Oy

Lời giải:

a) Điểm A đối xứng với điểm M qua gốc O nên O là trung điểm của AM.

Do đó AO=OM.

Gọi tọa độ điểm A(a; b).

Ta có: AO=0a;0b=a;bOM=1;3 (tọa độ vectơ OM chính là tọa độ điểm M).

Trong mặt phẳng toạ độ Oxy, cho điểm M(– 1; 3). (ảnh 1)

Vậy tọa độ điểm A là A(1; – 3).

b) Vì điểm B đối xứng với điểm M qua trục Ox nên hoành độ của điểm B giữ nguyên và tung độ của điểm B đối nhau với trung độ của điểm M.

Vậy ta có tọa độ của B là B(– 1; – 3).

Trong mặt phẳng toạ độ Oxy, cho điểm M(– 1; 3). (ảnh 2)

c) Điểm C đối xứng với điểm M qua trục Oy nên tung độ của điểm C giữ nguyên và hoành độ của điểm C đối nhau với hoành độ của điểm M.

Vậy tọa độ của điểm C là C(1; 3).

Bài 6 trang 66 Toán lớp 10 Tập 2: Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng A(– 3; 1), B(– 1; 3), I(4; 2). Tìm toạ độ của hai điểm C, D sao cho tứ giác ABCD là hình bình hành nhận I làm tâm đối xứng.

Lời giải:

Gọi tọa độ điểm C(xC; yC), tọa độ điểm D(xD; yD).

Khi đó ta có: AI=43;21=7;1IC=xC4;yC2.

Vì I là tâm đối xứng của hình bình hành ABCD nên I là trung điểm của AC, do đó

Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng A(– 3; 1), B(– 1; 3), I(4; 2) (ảnh 1)

Vậy tọa độ điểm C là C(11; 3).

Ta có: AB=13;31=2;2DC=11xD;3yD.

Vì ABCD là hình bình hành nên AB=DCDC=2;2

Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng A(– 3; 1), B(– 1; 3), I(4; 2) (ảnh 2)

Vậy tọa độ điểm D là D(9; 1).

Bài 7 trang 66 Toán lớp 10 Tập 2: Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1; – 2), N(4; – 1) và P(6; 2) lần lượt là trung điểm của các cạnh BC, CA, AB. Tìm tọa độ của các điểm A, B, C.

Lời giải:

Gọi tọa độ điểm A(xA; yA), B(xB; yB), C(xC; yC).

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1; – 2), N(4; – 1) và P(6; 2) (ảnh 1)

Đánh giá

0

0 đánh giá