Với giải Câu hỏi trang 50 SBT Toán 10 Tập 1 Kết nối tri thức trong Bài 8: Tổng và hiệu của hai vecto giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem:
SBT Toán 10 Kết nối tri thức trang 50 Bài 8: Tổng và hiệu của hai vecto
Lời giải:
Giả sử ba điểm A, B, C thoả mãn:
Khi đó ta có: (quy tắc ba điểm)
Do đó:
Mặt khác: xét tam giác ABC, theo bất đẳng thức trong tam giác ta có:
AB – BC < AC < AB + BC
a) Chứng minh rằng O là trung điểm MN.
b) Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.
Lời giải:
a) Vì ABCD là hình bình hành tâm O
Nên O là trung điểm của AC và BD và
Xét ∆ODN và ∆OBM có:
OD = OB (do O là trung điểm của BD),
(hai góc đối đỉnh),
(do )
∆ODN = ∆OBM (g.c.g)
ON = OM (hai cạnh tương ứng)
O là trung điểm của NM.
Vậy O là trung điểm của NM.
b) Vì G là trọng tâm ∆BCD nên
(quy tắc hiệu)
(*)
Ta có: O là trung điểm của NM (câu a), O là trung điểm của BD (câu a)
BMDN là hình bình hành
Thay vào (*) ta được
Do đó
G là trọng tâm tam giác MNC.
Vậy G là trọng tâm tam giác MNC.
Bài 4.9 trang 50 sách bài tập Toán lớp 10 Tập 1: Cho tứ giác ABCD.
a) Chứng minh rằng
b) Chứng minh rằng
Lời giải:
a) Theo quy tắc ba điểm ta có:
Vậy
b) Theo quy tắc ba điểm ta có:
Vậy
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 4.9 trang 50 sách bài tập Toán lớp 10 Tập 1: Cho tứ giác ABCD...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.