SBT Toán 10 Cánh Diều trang 93 Bài 4: Tổng và hiệu của hai vecto

322

Với giải Câu hỏi trang 93 SBT Toán 10 Tập 1 Cánh Diều trong Bài 4: Tổng và hiệu của hai vecto giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Cánh Diều trang 93 Bài 4: Tổng và hiệu của hai vecto

Bài 41 trang 93 SBT Toán 10Cho hai vectơ a,b khác 0 . Chứng minh rằng nếu hai vectơ cùng hướng thì .|a|+|b|=|a+b|

Lời giải:

 Cho hai vectơ a, vectơ b khác vectơ 0 . Chứng minh rằng nếu hai vectơ cùng hướng thì | vectơ a | + | vectơ b | = | vectơ a + vectơ b |

Không mất tính tổng quát ta lấy một điểm A bất kì, vẽ AB=aBC=b

Vì hai vectơ a,b cùng hướng nên A, B, C thẳng hàng, B nằm giữa A và C.

Ta có: |a|=|AB|=AB,|b|=|BC|=BC

⇒ |a|+|b|=AB+BC=AC

|a+b|=|AB+BC|=AC.

Vậy |a|+|b|=|a+b| .

Bài 42 trang 93 SBT Toán 10Cho hình vuông ABCD cạnh a. Tính |AB+AC| .

Lời giải:

 Cho hình vuông ABCD cạnh a. Tính | vectơ AB + vectơ AC |

Lấy E là điểm thỏa mãn ABEC là hình bình hành, gọi M là trung điểm của BC.

Khi đó ta có: AB+AC=AE

⇒ |AB+AC|=|AE|=AE

Vì M là trung điểm của BC nên M là trung điểm của AE

⇒ AE = 2AM.

Xét tam giác ABM vuông tại B, có:

AM2 = AB2 + BM2 (định lí pythagoras)

⇔ AM2 = a2 + a22 = a2 + a24 = 5a24

⇔ AM = 5a2

⇒ AE = 2AM = 2.5a2=5a

Vậy AE = 5a .

Bài 43 trang 93 SBT Toán 10Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm của AD, G là giao điểm của BE và AC. Tính:

a) OA+OB+OC+OD ;

b) GA+GB+GD .

Lời giải:

 Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm của AD

a) Xét hình bình hành ABCD, có O là giao điểm của AC và BD nên O là trung điểm của AC và O là trung điểm của BD.

⇒ OA+OC=0 và OB+OD=0

Ta có: OA+OB+OC+OD

=OA+OC+OB+OD.

=0+0=0

Vậy OA+OB+OC+OD=0 .

b) Xét tam giác ABD, có:

AO là trung tuyến, BE là đường trung tuyến

Mà AO giao với BE tại G nên G là trọng tâm tam giác ABD

⇒ GA+GB+GD=0

Vậy GA+GB+GD=0 .

Bài 44 trang 93 SBT Toán 10Cho tam giác ABC. Tìm tập hợp các điểm M trong mặt phẳng thỏa mãn |AB+BM|=|ACAM| .

Lời giải:

Ta có: AB+BM=AM

⇒ |AB+BM|=|AM|=AM

Ta lại có: ACAM=AC+MA=MC

⇒ |ACAM|=|MC|=MC

Vì |AB+BM|=|ACAM| nên AM = MC

Tập hợp điểm M thỏa mãn AM = MC là đường trung trực của đoạn thẳng AC.

Vậy tập hợp điểm M thỏa mãn điều kiện đầu bài là đường trung trực của đoạn thẳng AC.

Bài 45 trang 93 SBT Toán 10Cho hai tam giác ABC và A’B’C’ có cùng trọng tâm là G. Chứng minh AA'+BB'+CC'=0 .

Lời giải:

Ta có: AA'+BB'+CC'=AG+GA'+BG+GB'+CG+GC'

=AG+BG+CG+GA'+GB'+GC'

=GAGBGC+GA'+GB'+GC'

=GA+GB+GC+GA'+GB'+GC'

=0+0

=0

Đánh giá

0

0 đánh giá