Bạn cần đăng nhập để đánh giá tài liệu

SBT Toán 10 Cánh Diều trang 82 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

441

Với giải Câu hỏi trang 82 SBT Toán 10 Tập 2 Cánh Diều trong Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Cánh Diều trang 82 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 38 trang 82 SBT Toán 10Cho Δ1:Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t' và 2:Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:

A. 300;

B. 450;

C. 900;

D. 600.

Lời giải:

Ta thấy vectơ chỉ phương của ∆1 là: u1=(3;-1)

Vectơ chỉ phương của ∆2 là: u2=(3;1)

Ta có: cos(u1,u2) = Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'

Suy ra góc giữa 2 đường thẳng chính là góc nhọn giữa 2 vectơ chỉ phương của 2 đường thẳng đó.

Do đó Δ1,Δ2=u1,u2=60o

Vậy chọn đáp án D.

Bài 39 trang 82 SBT Toán 10Khoảng cách từ điểm M(5; - 2) đến đường thẳng ∆: - 3x + 2y + 6 = 0 là:

A. 13;

B. 13;

C. 1313;

D. 213.

Lời giải:

Áp dụng công thức ta có:

d(M, ∆)= Khoảng cách từ điểm M(5; - 2) đến đường thẳng ∆: - 3x + 2y + 6 = 0 là=13

Vậy chọn đáp án B.

Bài 40 trang 82 SBT Toán 10Xét vị trí tương đối của mỗi cặp đường thẳng sau:

a) d1: 2x – 3y + 5 = 0 và d2: 2x + y – 1 = 0;

b) d3:Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0 và d4: x + 3y – 5 = 0;

c) d5Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0 và d6Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0.

Lời giải:

a) Vectơ pháp tuyến của d1 là: n1=(2;-3)

Vectơ pháp tuyến của d2 là: n2=(2;1)

Ta có: 2231 suy ra hai vectơ n1 và n2 không cùng phương.

Do đó d1 và d2 cắt nhau.

b) Vectơ chỉ phương của d3 là: u3=(-3;1) nên vectơ pháp tuyến của d3 là: n3=(1;3).

Vectơ pháp tuyến của d4 là: n4=(1;3)

Ta có n3=n4 nên n3và n4 cùng phương hay d3 song song hoặc trùng d­4.

Lấy điểm A(-1; 3) thuộc d3.

Thay tọa độ A(-1; 3) vào d4 ta có: - 1 + 3.3 – 5 = 3 = 0 (vô lí).

Suy ra A(-1; 3) không thuộc d4.

Vậy 2 đường thẳng trên song song.

c) Vectơ chỉ phương của d5 là u5=(-2;1)

Vectơ chỉ phương của d6 là u6=(2;-1)

Ta thấy u5=1.u6 nên 2 vectơ u5 và u6 cùng phương. Do đó hai đường thẳng d5 và d6 song song hoặc trùng nhau.

Lấy điểm M(2; -1) thuộc đường thẳng d5. Thay tọa độ điểm M vào phương trình tham số của d6 ta có:

Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0t'=2

Suy ra M thuộc d6.

Vậy dtrùng d6.

Bài 41 trang 82 SBT Toán 10Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau:

a) ∆1: 3x + y – 5 = 0 và ∆2: x + 2y – 3 = 0;

b) ∆3Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau a) ∆1 3x + y – 5 = 0 và ; 4Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau a) ∆1 3x + y – 5 = 0

c) Δ5: -3x+3y+2=0 và ∆6Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau a) ∆1 3x + y – 5 = 0.

Lời giải:

a) Vectơ pháp tuyến của Δ1 là n1=(3;1)

Vectơ pháp tuyến của Δ2 là n2=(1;2)

Góc giữa 2 đường thẳng là:

cos(Δ1,Δ2)= |cos(n1.n2)|= Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau a) ∆1 3x + y – 5 = 0

Suy ra (Δ1,Δ2)=45°.

b) Vectơ chỉ phương của Δ3 là u3=(3;3)

Vectơ chỉ phương của Δ4 là u4=(-3;-1)

Góc giữa 2 đường thẳng là:

cos(Δ3,Δ4)= |cos(u3.u4)|= Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau a) ∆1 3x + y – 5 = 0

Suy ra (Δ3,Δ4)=30°.

c) Vectơ pháp tuyến của Δ5 là n5=(-3;3)

Vectơ chỉ phương của Δ6 là u6=(3;-3) nên vectơ pháp tuyến của Δ6 là n6=(3;3).

Góc giữa 2 đường thẳng là:

cos(Δ5;Δ6)= |cos(n5,n6)|

Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau a) ∆1 3x + y – 5 = 0

Suy ra (Δ5;Δ6)=60°.

Bài 42 trang 82 SBT Toán 10Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau:

a) A(- 3; 1) và ∆1: 2x + y – 4 = 0;

b) B(1; - 3) và Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau a) A(- 3; 1) và ∆1 2x + y – 4 = 0.

Lời giải:

a) Ta có: vectơ pháp tuyến của đường thẳng Δ1 là n1=(2;1)

Suy ra d(A,Δ1)= Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau a) A(- 3; 1) và ∆1 2x + y – 4 = 0.

b) Δ2 có vectơ chỉ phương là u2=(3;-1) và đi qua điểm A(-3; 1).

Vectơ pháp tuyến của đường thẳng Δ2 là: n2=(1;3).

Suy ra phương trình đường thẳng Δ2 là: x + 3 + 3( y – 1) = 0 hay x + 3y = 0

d(B,Δ2)= Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau a) A(- 3; 1) và ∆1 2x + y – 4 = 0.

Bài 43 trang 82 SBT Toán 10Cho hai đường thẳng song song ∆1: ax + by + c = 0 và ∆2: ax + by + d = 0. Chứng minh rằng khoảng cách giữa hai đường thẳng ∆1 và ∆2 bằng Cho hai đường thẳng song song ∆1: ax + by + c = 0 và ∆2: ax + by + d = 0.

Lời giải:

Gọi M(x0;y0) thuộc ∆1 nên ax0+by0+c=0.

Khoảng cách giữa ∆1 đến ∆2 bằng khoảng cách từ M đến ∆2 bằng

d(M;∆2)=Cho hai đường thẳng song song ∆1: ax + by + c = 0 và ∆2: ax + by + d = 0.

Vậy bài toán được chứng minh.

Bài 44 trang 82 SBT Toán 10Cho hai đường thẳng ∆1: mx – 2y – 1 = 0 và ∆2: x – 2y + 3 = 0. Với giá trị nào của tham số m thì:

a) ∆1 // ∆2;

b) ∆1 ⊥ ∆2.

Lời giải:

Vectơ pháp tuyến của ∆1 là: n1=(m;-2);

Vectơ pháp tuyến của ∆2 là: n2=(1;-2).

a) ∆1 // ∆2 khi n1 cùng phương với n2

hay m1=22m=1.

Thay m = 1 vào lần lượt hai đường thẳng ∆1 ta được: x – 2y – 1 = 0.

Lấy M(– 1; 1) thuộc ∆2, thay x = – 1 và y = 1 vào ∆1, ta được: – 1 – 2.1 – 1 = 0 (vô lí). Do đó M không thuộc ∆1.

Vậy m = 1 thỏa mãn để ∆1 // ∆2.

b) ∆1 vuông góc ∆2 khi n1 vuông góc với n2 hay n1.n2=0

⇔ m.1 + (-2).(-2) = 0 m = - 4.

Vậy với m= – 4 thì ∆1 vuông góc ∆2.

Đánh giá

0

0 đánh giá