Luyện tập 5 trang 92 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

409

Với giải Luyện tập 5 trang 92 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài 1: Đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Luyện tập 5 trang 92 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

Luyện tập 5 trang 92 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và AD.

a) Xác định giao điểm của mặt phẳng (CMN) với các đường thẳng AB, SB.

b) Xác định giao tuyến của mặt phẳng (CMN) với mỗi mặt phẳng (SAB) và (SBC).

Lời giải:

a)

Toán 11 (Cánh diều) Bài 1: Đường thẳng và mặt phẳng trong không gian (ảnh 12)

+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.

Mà NC ⊂ (CMN)

Suy ra: (CMN) ∩ AB = {E}.

+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.

Mà EM ⊂ (CMN)

Suy ra (SAB) ∩ EM = {F}.

b)

+) Ta có: M ∈ SA mà SA ⊂ (SAB) nên M ∈ (SAB);

                M ∈ CM mà CM ⊂ (CMN) nên M ∈ (CMN).

Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).

Ta lại có: AB ∩ CN = {E};

                AB ⊂ (SAB);

                CN ⊂ (CMN).

Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).

Vì vậy (SAB) ∩ (CMN) = EM.

+) Ta có: C ∈ SC mà SC ⊂ (SBC);

               C ∈ CM mà CM ⊂ (CMN).

Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).

Ta lại có: SB ∩ EM = {F};

                SB ⊂ (SBC);

                EM ⊂ (CMN).

Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).

Vì vậy (SBC) ∩ (CMN) = CF.

Đánh giá

0

0 đánh giá