Bài 7 trang 94 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

288

Với giải Bài 7 trang 94 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài 1: Đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 7 trang 94 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

Bài 7 trang 94 Toán 11 Tập 1: Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.

a) Chứng minh rằng các điểm M, N thuộc mặt phẳng (ABI).

b) Gọi G là giao điểm của AM và BN. Chứng minh rằng: GMGA=GNGB=13 .

c) Gọi P, Q lần lượt là trọng tâm các tam giác DAB, ABC. Chứng minh rằng các đường thẳng CP, DQ cùng đi qua điểm G và GPGC=GQGD=13 .

Lời giải:

a)

Toán 11 (Cánh diều) Bài 1: Đường thẳng và mặt phẳng trong không gian (ảnh 22)

+) Xét tam giác BCD có: I là trung điểm của CD nên BI là đường trung tuyến.

Mà M là trọng tâm tam giác BCD nên BI đi qua M.

Do đó M ∈ BI.

Lại có AI ⊂ (ABI) nên M ∈ (ABI).

+) Xét tam giác ACD có: I là trung điểm của CD nên AI là đường trung tuyến.

Mà N là trọng tâm tam giác ACD nên AI đi qua N.

Do đó N ∈ AI.

Lại có BI ⊂ (ABI) nên N ∈ (ABI).

b) Trong BCD có M là trọng tâm tam giác nên MIBI=13 .

Trong ACD có N là trọng tâm tam giác nên NIAI=13 .

Xét ABI có: NIAI=MIBI=13  nên MN // AB (theo định lí Thalès đảo).

Xét ABI và MN // AB, theo hệ quả định lí Thalès ta có MNAB=NIAI=MIBI=13 .

Xét ABG và MN // AB, theo hệ quả định lí Thalès ta có GMGA=GNGB=MNAB=13 .

c)

Toán 11 (Cánh diều) Bài 1: Đường thẳng và mặt phẳng trong không gian (ảnh 23)

• Gọi G’ là giao điểm của AM và CP; G’’ là giao điểm của AM và DQ.

Chứng minh tương tự câu b, ta có: G'MG'A=G'PG'C=PMAC=13  và G''MG''A=G''QG''D=QMAD=13

Do đó GMGA=G'MG'A=G''MG''A=13 .

Mà G, G’, G’’ cùng nằm trên AM nên G ≡ G’ ≡ G’’.

Vậy các đường thẳng CP, DQ cùng đi qua điểm G.

• Xét tam giác ABC, kẻ đường trung tuyến AE (E ∈ BC).

Ta có: Q là trọng tâm DABC nên AQAE=23.

Xét tam giác ABD, kẻ đường trung tuyến AF (F ∈ BD).

Ta có: P là trọng tâm ABD nên APAF=23.

+) Trong mặt phẳng (AEF), có: AQAE=APAF=23 nên PQ // EF (định lí Thalès đảo)

Mà EF // CD (đường trung bình tam giác BCD).

Suy ra PQ // CD

Theo hệ quả định lí Thalès ta có: GPGC=GQGD=QPCD=QP2EF=12.23=13 .

Đánh giá

0

0 đánh giá