HĐ1 trang 111 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

265

Với giải HĐ1 trang 111 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 16: Giới hạn của hàm số giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

HĐ1 trang 111 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

HĐ1 trang 111 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại một điểm

Cho hàm số fx=4x2x2.

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số xn=2n+1n. Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn ⟶ 2, tính f(xn) và tìm limn+fxn.

Lời giải:

a) Biểu thức f(x) có nghĩa khi x – 2 ≠ 0 ⇔ x ≠ 2.

Do đó, tập xác định của hàm số f(x) là D = ℝ \ {2}.

b) Ta có:

Toán 11 Bài 16 (Kết nối tri thức): Giới hạn của hàm số (ảnh 1)

limn+un=limn+fxn=limn+41n=4.

c) Ta có: fxn=4xn2xn2=2xn2+xn2xn=2xn.

Vì xn ≠ 2 và xn ⟶ 2 với mọi n nên limn+xn=2.

Do đó, limn+fxn=limn+2xn=22=4.

Đánh giá

0

0 đánh giá