Giải Toán 11 trang 113 Tập 1 (Kết nối tri thức)

287

Với giải SGK Toán 11 Kết nối tri thức trang 113 chi tiết trong Bài 16: Giới hạn của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 113 Tập 1 (Kết nối tri thức)

Luyện tập 1 trang 113 Toán 11 Tập 1: Tính limx1x1x1.

Lời giải:

Do mẫu thức có giới hạn là 0 khi x ⟶ 1 nên ta không thể áp dụng ngay quy tắc tính giới hạn của thương hai hàm số.

Lại có: x1x1=(x+1)(x1)x1=x+1.

Do đó limx1x1x1=limx1(x+1)=limx1x+limx11=1+1=2.

HĐ2 trang 113 Toán 11 Tập 1: Nhận biết khái niệm giới hạn một bên

Cho hàm số Toán 11 (Kết nối tri thức) Bài 16: Giới hạn của hàm số (ảnh 1).

a) Cho xn=nn+1 và x'. Tính yn = f(xn) và y'n = f(x'n).

b) Tìm giới hạn của các dãy số (yn) và (y'n).

c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn ⟶ 1, x'n ⟶ 1, tính  và .

Lời giải:

a) Ta có:  với mọi n  với mọi n.

Do đó, Toán 11 (Kết nối tri thức) Bài 16: Giới hạn của hàm số (ảnh 2)

Ta cũng có:  với mọi n ⇒ x'n – 1 > 0 với mọi n.

Do đó, Toán 11 (Kết nối tri thức) Bài 16: Giới hạn của hàm số (ảnh 3)

b) Ta có .

c) Ta có: 

Toán 11 (Kết nối tri thức) Bài 16: Giới hạn của hàm số (ảnh 4)

Vì xn < 1 < x'n, suy ra xn – 1 < 0 và x'n – 1 > 0 với mọi n.

Do đó, f(xn) = – 1 và f(x'n) = 1.

Vậy = – 1 và = 1.

Luyện tập 2 trang 113 Toán 11 Tập 1: Cho hàm số Toán 11 (Kết nối tri thức) Bài 16: Giới hạn của hàm số (ảnh 5)

Tính  và .

Lời giải:

Với dãy số (xn) bất kì sao cho xn < 0 và xn ⟶ 0, ta có f(xn) = – xn.

Do đó .

Tương tự, với dãy số (xn) bất kì sao cho xn > 0 và xn ⟶ 0, ta có f(xn) = .

Do đó .

Khi đó,  =  = 0. Vậy  = 0.

Đánh giá

0

0 đánh giá