Với giải SGK Toán 11 Kết nối tri thức trang 118 chi tiết trong Bài 16: Giới hạn của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 118 Tập 1 (Kết nối tri thức)
Luyện tập 5 trang 118 Toán 11 Tập 1: Tính và .
Lời giải:
+) Ta có: , x – 2 > 0 với mọi x > 2 và
.
Do đó, .
+) Ta có: , x – 2 < 0 với mọi x < 2 và
.
Do đó, .
Bài tập
Bài 5.7 trang 118 Toán 11 Tập 1: Cho hai hàm số và g(x) = x + 1. Khẳng định nào sau đây là đúng?
a) f(x) = g(x);
b) .
Lời giải:
+) Biểu thức f(x) có nghĩa khi x – 1 ≠ 0 ⇔ x ≠ 1.
Ta có: , với mọi x ≠ 1.
Biểu thức g(x) = x + 1 có nghĩa với mọi x.
Do đó, điều kiện xác định của hai hàm số f(x) và g(x) khác nhau, vậy khẳng định a) là sai.
+) Ta có: ;
.
Vậy nên khẳng định b) là đúng.
Bài 5.8 trang 118 Toán 11 Tập 1: Tính các giới hạn sau:
a) ;
b) .
Lời giải:
Do mẫu thức có giới hạn là 0 khi x ⟶ 0 nên ta không thể áp dụng ngay quy tắc tính giới hạn của thương hai hàm số đối với cả hai câu a và b.
a) Ta có:
Do đó .
b) Ta có: .
Do đó .
Tính và .
Lời giải:
Với dãy số (tn) bất kì sao cho tn < 0 và tn ⟶ 0, ta có H(tn) = 0.
Do đó .
Tương tự, với dãy số (tn) bất kì sao cho tn > 0 và tn ⟶ 0, ta có H(tn) = 1.
Do đó .
Bài 5.10 trang 118 Toán 11 Tập 1: Tính các giới hạn một bên:
a) ;
b) .
Lời giải:
a) Ta có: , x – 1 > 0 với mọi x > 1 và
.
Do đó, .
b) Ta có: , 4 – x > 0 với mọi x < 4 và
.
Do đó, .
Bài 5.11 trang 118 Toán 11 Tập 1: Cho hàm số .
Tìm và .
Lời giải:
Ta có:
Do đó, ;
.
Bài 5.12 trang 118 Toán 11 Tập 1:Tính các giới hạn sau:
a) ;
b) .
Lời giải:
a).
b) Ta có:
Do đó,
Bài 5.13 trang 118 Toán 11 Tập 1: Cho hàm số .
Tính và .
Lời giải:
Ta có:
+) và (do x – 2 > 0 khi x > 2).
Áp dụng quy tắc tìm giới hạn của tích, ta được .
+) và (do x – 2 < 0 khi x < 2).
Áp dụng quy tắc tìm giới hạn của tích, ta được .
Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 111 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại một điểm Cho hàm số .
Luyện tập 1 trang 113 Toán 11 Tập 1: Tính .
HĐ2 trang 113 Toán 11 Tập 1: Nhận biết khái niệm giới hạn một bên
Luyện tập 2 trang 113 Toán 11 Tập 1: Cho hàm số
HĐ3 trang 114 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại vô cực
Luyện tập 3 trang 115 Toán 11 Tập 1: Tính .
HĐ4 trang 115 Toán 11 Tập 1:Nhận biết khái niệm giới hạn vô cực
HĐ5 trang 116 Toán 11 Tập 1: Cho hàm số . Với các dãy số (xn) và (x'n) cho bởi , , tính và .
Luyện tập 4 trang 116 Toán 11 Tập 1: Tính các giới hạn sau: a) ;
Bài 5.7 trang 118 Toán 11 Tập 1: Cho hai hàm số và g(x) = x + 1. Khẳng định nào sau đây là đúng?
Bài 5.8 trang 118 Toán 11 Tập 1: Tính các giới hạn sau: a) ;
Bài 5.10 trang 118 Toán 11 Tập 1: Tính các giới hạn một bên: a) ;
Bài 5.11 trang 118 Toán 11 Tập 1: Cho hàm số .
Bài 5.12 trang 118 Toán 11 Tập 1:Tính các giới hạn sau: a) ;
Bài 5.13 trang 118 Toán 11 Tập 1: Cho hàm số .
Tính và .
Xem thêm các bài giải sách giáo khoa Toán 11 Kết nối tri thức hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.