Lý thuyết Các phép biến đổi lượng giác (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

471

Toptailieu.vn xin giới thiệu Lý thuyết Các phép biến đổi lượng giác (Cánh diều) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Các phép biến đổi lượng giác (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

Bài giải Bài 2: Các phép biến đổi lượng giác

A. Lý thuyết Các phép biến đổi lượng giác

I. Công thức cộng

sin(a+b)=sinacosb+cosasinbsin(ab)=sinacosbcosasinbcos(a+b)=cosacosbsinasinbcos(ab)=cosacosb+sinasinbtan(a+b)=tana+tanb1tanatanbtan(ab)=tanatanb1+tanatanb

II. Công thức nhân đôi

sin2a=2sinacosacos2a=cos2asin2a=2cos2a1=12sin2atan2a=2tana1tan2a

Suy ra, công thức hạ bậc:

 sin2a=1cos2a2,cos2a=1+cos2a2

III. Công thức biến đổi tích thành tổng

cosacosb=12[cos(a+b)+cos(ab)]sinasinb=12[cos(ab)cos(a+b)]sinacosb=12[sin(a+b)+sin(ab)]

IV. Công thức biến đổi tổng thành tích

cosa+cosb=2cosa+b2cosab2cosacosb=2sina+b2sinab2sina+sinb=2sina+b2cosab2sinasinb=2cosa+b2sinab2

Lý thuyết Các phép biến đổi lượng giác – Toán 11 Cánh diều (ảnh 1)

B. Bài tập Các phép biến đổi lượng giác

Bài 1. Cho ∆ABC. Chứng minh rằng:

a) sinA+sinB+sinC=4cosA2cosB2cosC2;

b) sinA+sinBcosA+cosB=cotC2;

c) sin2A+sin2B+sin2C=2SR2, với R là bán kính đường tròn ngoại tiếp ∆ABC và S là diện tích ∆ABC.

Hướng dẫn giải

∆ABC, có: A^+B^+C^=180°, suy ra A^+B^=180°C^

Do đó A^+B^2=90°C^2.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

b) VT=sinA+sinBcosA+cosB=2sinA+B2cosAB22cosA+B2cosAB2

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy ta có điều phải chứng minh.

c) VT = sin2A + sin2B + sin2C

= 2sin(A + B).cos(A – B) + 2sinC.cosC

= 2sin(180° – C).cos(A – B) + 2sinC.cosC

= 2sinC.cos(A – B) + 2sinC.cosC

= 2sinC.[cos(A – B) + cosC]

= 2sinC.[cos(A – B) + cos(180° – A – B)]

= 2sinC.[cos(A – B) – cos(A + B)]

= –4sinC.sinA.sin(–B)

= 4sinA.sinB.sinC

=4.a2R.b2R.c2R=abc4R.2R2=2SR2=VP.

Vậy ta có điều phải chứng minh.

Bài 2. Chứng minh rằng:

a) cos3x.sinxsin3x.cosx=14sin4x;

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Hướng dẫn giải

a) VT = cos3x.sinx – sin3x.cosx

= cosx.sinx.(cos2x – sin2x)

=12sin2x.cos2x

=14sin4x = VP.

Vậy ta có điều phải chứng minh.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 3. Cho cos2a=45, với π4<a<π2. Tính sina, cosa, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác, sin2a, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác.

Hướng dẫn giải

Vì π4<a<π2 nên sina > 0, cosa > 0.

• Áp dụng công thức hạ bậc, ta được: sin2a=1cos2a2=1+452=910

Suy ra sina=310 (do sina > 0)

• Áp dụng công thức hạ bậc, ta được: cos2a=1+cos2a2=1452=110.

Suy ra cosa=110.

• Áp dụng công thức cộng đối với sin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

=310.12+110.32=30+31020.

• Áp dụng công thức nhân đôi, ta được:

sin2a=2sinacosa=2.310.110=35.

• Áp dụng công thức cộng đối với côsin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 4. Tính α + β biết tanα=25,  tanβ=37.

Hướng dẫn giải

Áp dụng công thức cộng đối với tang, ta được: Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy α+β=π4.

Xem thêm Lý thuyết  các bài Toán 11 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Lý thuyết Bài 3: Hàm số lượng giác và đồ thị

Lý thuyết Bài 4: Phương trình lượng giác cơ bản

Lý thuyết Bài 1: Dãy số

Lý thuyết Bài 2: Cấp số cộng

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá