Lý thuyết Hàm số lượng giác và đồ thị (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

555

Toptailieu.vn xin giới thiệu Lý thuyết Hàm số lượng giác và đồ thị (Cánh diều) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Hàm số lượng giác và đồ thị (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

Bài giải Bài 3: Hàm số lượng giác và đồ thị

A. Lý thuyết Hàm số lượng giác và đồ thị

I. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

1. Hàm số chẵn, hàm số lẻ

Cho hàm số y = f(x) có tập xác định là D.

  • Hàm số f(x) được gọi là hàm số chẵn nếu xD thì xD và f(x)=f(x). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.
  • Hàm số f(x) được gọi là hàm số lẻ nếu xD thì xD và f(x)=f(x). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

2. Hàm số tuần hoàn 

Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T  0 sao cho với mọi xD ta có:

  • x+TD và xTD
  • f(x+T)=f(x)

 Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.

3. Đồ thị và tính chất của hàm số y =  sinx

Tập xác định là R.

Tập giá trị là [-1;1].

Là hàm số lẻ và tuần hoàn chu kì 2π.

Đồng biến trên mỗi khoảng (π2+k2π;π2+k2π) và nghịch biến trên mỗi khoảng (π2+k2π;3π2+k2π).

Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.

4. Đồ thị và tính chất của hàm số y =  cosx

Tập xác định là R.

Tập giá trị là [-1;1].

Là hàm số chẵn và tuần hoàn chu kì 2π.

Đồng biến trên mỗi khoảng (π+k2π;k2π) và nghịch biến trên mỗi khoảng (k2π;π+k2π).

Có đồ thị là một đường hình sin đối xứng qua trục tung.

5. Đồ thị và tính chất của hàm số y =  tanx

Tập xác định là R{π2+kπ|kZ}.

Tập giá trị là R.

Là hàm số lẻ và tuần hoàn chu kì π.

Đồng biến trên mỗi khoảng (π2+kπ;π2+kπ)kZ.

Có đồ thị đối xứng qua gốc tọa độ.

6. Đồ thị và tính chất của hàm số y =  cotx

Tập xác định là R{kπ|kZ}.

Tập giá trị là R.

Là hàm số lẻ và tuần hoàn chu kì π.

Đồng biến trên mỗi khoảng (kπ;π+kπ)kZ.

Có đồ thị đối xứng qua gốc tọa độ.

Lý thuyết Hàm số lượng giác và đồ thị – Toán 11 Cánh diều (ảnh 1)

B. Bài tập Hàm số lượng giác và đồ thị

Đang cập nhật ...

Xem thêm Lý thuyết  các bài Toán 11 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 2: Các phép biến đổi lượng giác

Lý thuyết Bài 4: Phương trình lượng giác cơ bản

Lý thuyết Bài 1: Dãy số

Lý thuyết Bài 2: Cấp số cộng

Lý thuyết Bài 3: Cấp số nhân

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá