Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

593

Toptailieu biên soạn và giới thiệu lời giải Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi SGK Toán 11 Bài 3 từ đó học tốt môn Toán 11.

Giải Bài 3: Hàm số lượng giác và đồ thị  SGK Toán 11 Tập 1 (Cánh Diều)

Giải Toán 11 trang 22 Tập 1

Câu hỏi khởi động trang 22 Toán 11 Tập 1: Guồng nước (hay còn gọi là cọn nước) không chỉ là công cụ phục vụ sản xuất nông nghiệp, mà đã trở thành hình ảnh quen thuộc của bản làng và là một nét văn hoá đặc trưng của đồng bào dân tộc miền núi phía Bắc.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 1)

Một chiếc guồng nước có dạng hình tròn bán kính 2,5 m; trục của nó đặt cách mặt nước 2 m. Khi guồng quay đều, khoảng cách h (m) từ một ống đựng nước gắn tại một điểm của guồng đến mặt nước được tính theo công thức h = |y|, trong đó y = 2,5sin2πxπ2+2, với x (phút) là thời gian quay của guồng (x ≥ 0).

(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020).

Khoảng cách h phụ thuộc vào thời gian quay x như thế nào?

Lời giải:

Khoảng cách h phụ thuộc vào thời gian quay x theo biểu thức:

h = |2,5sin2πxπ2+2|

I. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

Hoạt động 1 trang 22 Toán 11 Tập 1a) Cho hàm số f(x) = x2.

• Với x  ℝ, hãy so sánh f(‒x) và f(x).

• Quan sát parabol (P) là đồ thị của hàm số f(x) = x2 (Hình 19) và cho biết trục đối xứng của (P) là đường thẳng nào.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 2)

b) Cho hàm số g(x) = x.

• Với x  ℝ, hãy so sánh g(‒x) và ‒g(x).

• Quan sát đường thẳng d là đồ thị của hàm số g(x) = x (Hình 20) và cho biết gốc toạ độ O có là tâm đối xứng của đường thẳng d hay không.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 3)

Lời giải:

a) Xét hàm số f(x) = x2.

• Với x  ℝ, ta có: f(‒x) = (‒x)2 = x2.

Do đó f(‒x) = f(x).

• Trục đối xứng của (P) là đường thẳng x = 0, hay chính là trục Oy.

b) Xét hàm số g(x) = x.

• Với x  ℝ, ta có: g(‒x) = ‒x và ‒g(x) = ‒x.

Do đó g(‒x) = ‒g(x).

• Gốc tọa độ O là tâm đối xứng của đường thẳng d.

Giải Toán 11 trang 23 Tập 1

Luyện tập 1 trang 23 Toán 11 Tập 1a) Chứng tỏ rằng hàm số g(x) = x3 là hàm số lẻ.

b) Cho ví dụ về hàm số không là hàm số chẵn và cũng không là hàm số lẻ.

Lời giải:

a) Xét hàm số g(x) = x3 có tập xác định D = ℝ.

 ℝ thì ‒x  ℝ, ta có: g(‒x) = (‒x)3 = ‒x3 = ‒g(x).

Do đó hàm số g(x) = x3 là hàm số lẻ.

b) Ví dụ về hàm số không là hàm số chẵn và cũng không là hàm số lẻ:

f(x) = x2 + x; g(x) = 2x3 – 3x2; …

Hoạt động 2 trang 23 Toán 11 Tập 1: Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như Hình 21.

a) Có nhận xét gì về đồ thị hàm số trên mỗi đoạn [a ; a + T], [a + T; a + 2T], [a – T; a]?

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 4)

b) Lấy điểm M(x0; f(x0)) thuộc đồ thị hàm số với x0  [a; a + T]. So sánh mỗi giá trị f(x0 + T), f(x0 − T) với f(x0).

Lời giải:

a) Đồ thị hàm số trên mỗi đoạn [a ; a + T], [a + T; a + 2T], [a – T; a] có dạng giống nhau.

b) Ta có f(x0 + T) = f(x0);

f(x0 − T) = f(x0).

Luyện tập 2 trang 23 Toán 11 Tập 1: Cho ví dụ về hàm số tuần hoàn.

Lời giải:

Ví dụ về hàm số tuần hoàn:

Cho T là một số hữu tỉ và hàm số f(x) được cho bởi công thức sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 5)

Ta thấy, hàm số xác định trên ℝ. Xét một số thực tùy ý.

Nếu x là số hữu tỉ thì x + T cũng là số hữu tỉ;

Nếu x là số vô tỉ thì x + T cũng là số vô tỉ.

Do đó f(x + T) = f(x) với mọi x.

Vậy hàm số f(x) là hàm số tuần hoàn.

I. Hàm số y = sinx

Giải Toán 11 trang 24 Tập 1

Hoạt động 3 trang 24 Toán 11 Tập 1: Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (OA, OM) = x (rad) (Hình 22). Hãy xác định sinx.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 6)

Lời giải:

Giả sử tung độ của điểm M là y.

Khi đó ta có sinx = y.

Hoạt động 4 trang 24 Toán 11 Tập 1: Cho hàm số y = sinx.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 7)

b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; sinx) với x  [‒π; π] và nối lại ta được đồ thị hàm số y = sinx trên đoạn [‒π; π] (Hình 23).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 8)

c) Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], …, ta có đồ thị hàm số y = sin x trên ℝ được biểu diễn ở Hình 24.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 9)

Lời giải:

a) Thay từng giá trị của x vào hàm số y = sinx ta có bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 10)

b) Lấy thêm một số điểm (x; sinx) với x  [‒π; π] trong bảng sau và nối lại ta được đồ thị hàm số y = sinx trên đoạn [‒π; π] (hình vẽ).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 11)

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 12)

c) Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], …, ta có đồ thị hàm số y = sin x trên ℝ được biểu diễn ở hình vẽ sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 13)

Giải Toán 11 trang 25 Tập 1

Hoạt động 5 trang 25 Toán 11 Tập 1: Quan sát đồ thị hàm số y = sinx ở Hình 24.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 14)

a) Nêu tập giá trị của hàm số y = sinx.

b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = sinx.

c) Bằng cách dịch chuyển đồ thị hàm số y = sinx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta có nhận được đồ thị hàm số y = sinx trên đoạn [π; 3π] hay không? Hàm số y = sinx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = sinx.

Lời giải:

a) Tập giá trị của hàm số y = sinx là [‒1; 1].

b) Gốc toạ độ O là tâm đối xứng của đồ thị hàm số.

Do đó hàm số y = sinx là hàm số lẻ.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = sinx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta sẽ nhận được đồ thị hàm số y = sinx trên đoạn [π; 3π].

Làm tương tự như trên ta sẽ được đồ thị hàm số y = sinx trên ℝ.

‒ Xét hàm số f(x) = y = sinx trên ℝ, với T = 2π và x  ℝ ta có:

• x + 2π  ℝ và x – 2π  ℝ;

• f(x + 2π) = f(x)

Do đó hàm số y = sinx là hàm số tuần hoàn với chu kì T = 2π.

d) Quan sát đồ thị hàm số y = sinx ta thấy:

• Hàm số đồng biến trên mỗi khoảng 5π2;3π2;π2;π2;3π2;5π2;...

Ta có: 5π2;3π2=π22π;π22π;

3π2;5π2=π2+2π;π2+2π;

Do đó ta có thể viết hàm số đồng biến trên mỗi khoảng π2+k2π;π2+k2π với k  ℤ.

• Hàm số nghịch biến trên mỗi khoảng 7π2;5π2;3π2;π2;π2;3π2;...

Ta có: 3π2;π2=π22π;3π22π;

Do đó ta có thể viết hàm số nghịch biến trên mỗi khoảng π2+k2π;3π2+k2π với k  ℤ.

Luyện tập 3 trang 25 Toán 11 Tập 1: Hàm số y = sinx đồng biến hay nghịch biến trên khoảng 7π2;5π2?

Lời giải:

Do 7π2;5π2=π24π;3π24π=π2+2.2π;3π2+2.2π nên hàm số y = sinx nghịch biến trên khoảng 7π2;5π2.

III. Hàm số y = cosx

Giải Toán 11 trang 26 Tập 1

Hoạt động 6 trang 26 Toán 11 Tập 1: Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (OA, OM) = x (rad) (Hình 25). Hãy xác định cosx.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 15)

Lời giải:

Giả sử hoành độ của điểm M là y.

Khi đó ta có sinx = y.

Hoạt động 7 trang 26 Toán 11 Tập 1: Cho hàm số y = cosx.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 16)

b) Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x ; cosx) với x  [‒π; π] và nối lại ta được đồ thị hàm số y = cosx trên đoạn [‒π; π] (Hình 26).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 17)

c) Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], ta có đồ thị hàm số y = cosx trên ℝ được biểu diễn ở Hình 27.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 18)

Lời giải:

a) Thay từng giá trị của x vào hàm số y = cosx ta có bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 19)

b) Lấy thêm một số điểm (x; cosx) với x  [‒π; π] trong bảng sau và nối lại ta được đồ thị hàm số y = cosx trên đoạn [‒π; π] (hình vẽ).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 20)

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 21)

c) Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], …, ta có đồ thị hàm số y = cosx trên ℝ được biểu diễn ở hình vẽ sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 22)

Giải Toán 11 trang 27 Tập 1

Hoạt động 8 trang 27 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cosx ở Hình 27.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 23)

a) Nêu tập giá trị của hàm số y = cosx.

b) Trục tung có là trục đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cosx.

c) Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π] hay không? Hàm số y = cosx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = cosx.

Lời giải:

a) Tập giá trị của hàm số y = cosx là [‒1; 1].

b) Trục tung là trục đối xứng của đồ thị hàm số.

Do đó hàm số y = cosx là hàm số chẵn.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta sẽ nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π].

Làm tương tự như trên ta sẽ được đồ thị hàm số y = cosx trên ℝ.

‒ Xét hàm số f(x) = y = cosx trên ℝ, với T = 2π và x  ℝ ta có:

• x + 2π  ℝ và x – 2π  ℝ;

• f(x + 2π) = f(x)

Do đó hàm số y = cosx là hàm số tuần hoàn với chu kì T = 2π.

d) Quan sát đồ thị hàm số y = cosx ta thấy:

• Hàm số đồng biến trên mỗi khoảng (‒3π; ‒2π); (‒π; 0); (π; 2π); …

Ta có: (‒3π; ‒2π) = (‒π ‒ 2π; 0 ‒ 2π);

(π; 2π) = (‒π + 2π; 0 + 2π);

Do đó ta có thể viết hàm số đồng biến trên mỗi khoảng (‒π + k2π; k2π) với k  ℤ.

• Hàm số nghịch biến trên mỗi khoảng (‒2π; ‒π); (0; π); (2π; 3π); …

Ta có: (‒2π; ‒π) = (0 ‒ 2π; π ‒ 2π);

(2π; 3π) = (0 + 2π; π + 2π);

Do đó ta có thể viết hàm số nghịch biến trên mỗi khoảng (k2π; π + k2π) với k  ℤ.

Luyện tập 4 trang 27 Toán 11 Tập 1: Hàm số y = cosx đồng biến hay nghịch biến trên khoảng (‒2π; ‒π)?

Lời giải:

Do (‒2π; ‒π) = (0 – 2π; π – 2π) nên hàm số nghịch biến trên khoảng (‒2π; ‒π).

IV. Hàm số y = tanx

Hoạt động 9 trang 27 Toán 11 Tập 1: Xét tập hợp D = R\π2+kπ|k. Với mỗi số thực x  D, hãy nêu định nghĩa tanx.

Lời giải:

Nếu cosx ≠ 0, tức x\π2+kπ|k hay x  D thì ta có: tanx = sinxcosx.

Giải Toán 11 trang 28 Tập 1

Hoạt động 10 trang 28 Toán 11 Tập 1: Cho hàm số y = tanx.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 24)

b) Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với xπ2;π2 và nối lại ta được đồ thị hàm số y = tan x trên khoảng xπ2;π2 (Hình 28).

c) Làm tương tự như trên đối với các khoảng π2;3π2,3π2;π2, …, ta có đồ thị hàm số y = tan x trên D được biểu diễn ở Hình 29.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 25)

Lời giải:

a) Thay từng giá trị của x vào hàm số y = tanx ta có bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 26)

b) Lấy thêm một số điểm (x; tanx) với xπ2;π2 trong bảng sau và nối lại ta được đồ thị hàm số y = tanx trên khoảng xπ2;π2 (hình vẽ).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 27)

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 28)

c) Làm tương tự như trên đối với các π2;3π2,3π2;π2, …, ta có đồ thị hàm số y = tanx trên D được biểu diễn ở hình vẽ sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 29)

Hoạt động 11 trang 28 Toán 11 Tập 1: Quan sát đồ thị hàm số y = tanx ở Hình 29.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 30)

a) Nêu tập giá trị của hàm số y = tanx.

b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = tanx.

c) Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng π2;π2 song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = tanx trên khoảng π2;3π2 hay không? Hàm số y = tanx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = tanx.

Lời giải:

a) Tập giá trị của hàm số y = tanx là ℝ.

b) Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = tanx.

Do đó hàm số y = tanx là hàm số lẻ.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng π2;π2 song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = tanx trên khoảng π2;3π2.

Làm tương tự như trên ta sẽ được đồ thị hàm số y = tanx trên R\π2+kπ|k.

‒ Xét hàm số f(x) = y = tanx trên D = R\π2+kπ|k, với T = π và x  D ta có:

• x + π  D và x – π  D;

• f(x + π) = f(x)

Do đó hàm số y = tanx là hàm số tuần hoàn với chu kì T = π.

d) Quan sát đồ thị hàm số y = tanx ở Hình 29, ta thấy: đồ thị hàm số đồng biến trên mỗi khoảng 3π2;π2;π2;π2;π2;3π2;...

Ta có: 3π2;π2=π2π;π2π;

π2;3π2=π2+π;π2+π;

Do đó ta có thể viết đồ thị hàm số y = tanx đồng biến trên mỗi khoảng π2+kπ;π2+kπ với k  ℤ.

Giải Toán 11 trang 29 Tập 1

Luyện tập 5 trang 29 Toán 11 Tập 1: Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m và đồ thị hàm số y = tanx trên khoảng π2;π2.

Lời giải:

Xét đồ thị của hàm số y = m và đồ thị của hàm số y = tanx trên khoảng π2;π2 (hình vẽ).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 31)

Từ đồ thị của hai hàm số trên hình vẽ, ta thấy mọi m  ℝ thì hai đồ thị trên luôn cắt nhau tại 1 điểm.

Vậy số giao điểm của đường thẳng y = m (m  ℝ) và đồ thị hàm số y = tanx trên khoảng π2;π2 là 1.

V. Hàm số y = cotx

Hoạt động 12 trang 29 Toán 11 Tập 1: Xét tập hợp E = ℝ \ {kπ | k  ℤ}. Với mỗi số thực x  E, hãy nêu định nghĩa cotx.

Lời giải:

Nếu sinx ≠ 0, tức x  ℝ \ {kπ | k  ℤ} hay x  E thì ta có: cot x = cosxsinx.

Hoạt động 13 trang 29 Toán 11 Tập 1: Cho hàm số y = cotx.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 32)

b) Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với x  (0; π) và nối lại ta được đồ thị hàm số y = cotx trên khoảng (0; π) (Hình 30).

c) Làm tương tự như trên đối với các khoảng (π; 2π), (‒π; 0), (‒2π; ‒π), …, ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 31.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 33)

Lời giải:

a) Thay từng giá trị của x vào hàm số y = cotx ta có bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 34)

b) Lấy thêm một số điểm (x; cotx) với x  (0; π) trong bảng sau và nối lại ta được đồ thị hàm số y = cotx trên khoảng x  (0; π) (hình vẽ).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 35)

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 36)

c) Làm tương tự như trên đối với các π2;3π2,3π2;π2, …, ta có đồ thị hàm số y = tanx trên D được biểu diễn ở hình vẽ sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 37)

Giải Toán 11 trang 30 Tập 1

Hoạt động 14 trang 30 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cotx ở Hình 31.

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 38)

a) Nêu tập giá trị của hàm số y = cotx.

b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.

c) Bằng cách dịch chuyển đồ thị hàm số y = cotx trên khoảng (0; π) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = cotx trên khoảng (π; 2π) hay không? Hàm số y = cotx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.

Lời giải:

a) Tập giá trị của hàm số y = cotx là ℝ.

b) Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = cotx.

Do đó hàm số y = cotx là hàm số lẻ.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = cotx trên khoảng (0; π) song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = cotx trên khoảng (π; 2π).

Làm tương tự như trên ta sẽ được đồ thị hàm số y = cotx trên ℝ \ {kπ | k  ℤ}.

‒ Xét hàm số f(x) = y = cotx trên D = ℝ \ {kπ | k  ℤ}, với T = π và x  D ta có:

• x + π  D và x – π  D;

• f(x + π) = f(x)

Do đó hàm số y = cotx là hàm số tuần hoàn với chu kì T = π.

d) Quan sát đồ thị hàm số y = cotx ở Hình 31, ta thấy: đồ thị hàm số nghịch biến trên mỗi khoảng (‒2π; ‒π); (‒π; 0); (0; π); (π; 2π); …

Ta có: (‒2π; ‒π) = (0 ‒ 2π; π – 2π);

(‒π; 0) = (0 – π; π ‒ π);

(π; 2π) = (0 + π; π + π);

Do đó ta có thể viết đồ thị hàm số y = cotx nghịch biến trên mỗi khoảng (kπ; π + kπ) với k  ℤ.

Luyện tập 6 trang 30 Toán 11 Tập 1: Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m và đồ thị hàm số y = cotx trên khoảng (0; π).

Lời giải:

Xét đồ thị của hàm số y = m và đồ thị của hàm số y = cotx trên khoảng (0; π) (hình vẽ).

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 39)

Từ đồ thị của hai hàm số trên hình vẽ, ta thấy mọi m  ℝ thì hai đồ thị trên luôn cắt nhau tại 1 điểm.

Vậy số giao điểm của đường thẳng y = m (m  ℝ) và đồ thị hàm số y = cotx trên khoảng (0; π) là 1.

Bài tập

Giải Toán 11 trang 31 Tập 1

Bài 1 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

a) Hàm số y = sinx nhận giá trị bằng 1;

b) Hàm số y = sinx nhận giá trị bằng 0;

c) Hàm số y = cosx nhận giá trị bằng ‒1;

d) Hàm số y = cosx nhận giá trị bằng 0.

Lời giải:

a) Đồ thị hàm số y = sinx:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 40)

Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 1 tại x3π2;π2.

b) Đồ thị hàm số y = sinx:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 41)

Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 0 tại x  {‒2π; ‒π; 0; π; 2π}.

c) Đồ thị hàm số y = cosx:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 42)

Quan sát đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng ‒1 tại x  {‒π; π}.

d) Đồ thị hàm số y = cosx:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 43)

Quan sát hai đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng 0 tại x3π2;π2;π2;3π2.

Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng π;3π2 để:

a) Hàm số y = tanx nhận giá trị bằng ‒1;

b) Hàm số y = tanx nhận giá trị bằng 0;

c) Hàm số y = cotx nhận giá trị bằng 1;

d) Hàm số y = cotx nhận giá trị bằng 0.

Lời giải:

a) Xét đồ thị hàm số y = ‒1 và đồ thị hàm số y = tanx trên khoảng π;3π2:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 44)

Quan sát đồ thị của hai hàm số, ta thấy hàm số y = tanx nhận giá trị bằng ‒1 tại xπ4;π4.

b) Xét đồ thị hàm số y = tanx trên khoảng π;3π2:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 45)

Quan sát hình vẽ, ta thấy hàm số y = tanx nhận giá trị bằng 0 tại x  {0; π}.

c) Xét đồ thị hàm số y = 1 và đồ thị hàm số y = cotx trên khoảng π;3π2:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 46)

Quan sát đồ thị của hai hàm số, ta thấy hàm số y = cotx nhận giá trị bằng 1 tại x3π4;π4;5π4.

b) Xét đồ thị hàm số y = cotx trên khoảng π;3π2:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 47)

Quan sát hình vẽ, ta thấy hàm số y = cotx nhận giá trị bằng 0 tại xπ2;π2.

Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

a) y = sinx trên khoảng 9π2;7π2,21π2;23π2;

b) y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).

Lời giải:

a) Xét hàm số y = sinx:

Do 9π2;7π2=π24π;π24π nên hàm số y = sinx đồng biến trên khoảng 9π2;7π2.

Do 21π2;23π2=π2+10π;3π2+10π nên hàm số y = sinx nghịch biến trên khoảng 21π2;23π2.

b) Xét hàm số y = cosx:

Do (‒20π; ‒19π) = (0 ‒20π; π ‒ 20π) nên hàm số y = cosx nghịch biến trên khoảng (‒20π; ‒19π).

Do (‒9π; ‒8π) = (‒π – 8π; 0 ‒ 8π) nên hàm số y = cosx đồng biến trên khoảng (‒9π; ‒8π).

Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:

a) Với mỗi m  [‒1;1], có bao nhiêu giá trị απ2;π2 sao cho sinα = m;

b) Với mỗi m  [‒1;1], có bao nhiêu giá trị α  [0; π] sao cho cosα = m;

c) Với mỗi m  ℝ, có bao nhiêu giá trị απ2;π2 sao cho tanα = m;

d) Với mỗi m  ℝ, có bao nhiêu giá trị α  [0; π] sao cho cotα = m.

Lời giải:

a) Xét đồ thị hàm số y = m (m  [‒1;1]) và đồ thị hàm số y = sinx trên Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 48)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.

Vậy với mỗi m  [‒1;1] sẽ có 1 giá trị α Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11 sao cho sinα = m.

b) Xét đồ thị hàm số y = m (m  [‒1;1]) và đồ thị hàm số y = cosx trên [0; π]:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 49)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.

Vậy m  [‒1;1] sẽ có 1 giá trị α  [0; π] sao cho cosα = m.

c) Xét đồ thị hàm số y = m (m  ℝ) và đồ thị hàm số y = tanx trên Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 50)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  ℝ thì hai đồ thị cắt nhau tại 1 điểm.

Vậy với mỗi m  ℝ sẽ có 1 giá trị α Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11 sao cho tanα = m.

d) Xét đồ thị hàm số y = m (m  ℝ) và đồ thị hàm số y = cotx trên [0; π]:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 51)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  ℝ thì hai đồ thị cắt nhau tại 1 điểm.

Vậy với mỗi m  ℝ sẽ có 1 giá trị α  [0; π] sao cho cotα = m.

Bài 5 trang 31 Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số:

a) y = sinx cosx;

b) y = tanx + cotx;

c) y = sin2x.

Lời giải:

a) Xét hàm số f(x) = y = sinx cosx có D = ℝ:

•  D thì ‒x  D;

• f(‒x) = sin(‒x) . cos(‒x) = ‒sinx cosx = ‒f(x).

Do đó hàm số y = sinx cosx là hàm số lẻ.

b) Xét hàm số f(x) = y = tanx + cotx có D=R\kπ;π2+kπ|k:

•  D thì ‒x  D;

• f(‒x) = tan(‒x) + cot(‒x) = (‒tanx) + (‒cotx) = ‒(tanx + cotx) = ‒f(x).

Do đó hàm số y = tanx + cotx là hàm số lẻ.

c) Xét hàm số f(x) = y = sin2x có D = ℝ:

•  D thì ‒x  D;

• f(‒x) = sin2(‒x) = (‒sinx)2 = sin2x = f(x).

Do đó hàm số y = tanx + cotx là hàm số chẵn.

Bài 6 trang 31 Toán 11 Tập 1: Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó t là thời gian tính bằng giây, A là biên độ dao động và x là li độ dao động đều được tính bằng centimét. Khi đó, chu kì T của dao động là T=2πω. Xác định giá trị của li độ khi t = 0, t=T4,t=T2,t=3T4, t = T và vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong trường hợp:

a) A = 3 cm, φ = 0;

b) A = 3 cm, φ=π2;

c) A = 3 cm, φ=π2.

Lời giải:

Từ T = 2πω ta có ω=2πT.

Khi đó ta có phương trình li độ là x = Acos2πT.t+φ.

a)

‒ Với A = 3 cm và φ = 0 thay vào phương trình li độ x = Acos2πT.t+φ ta có:

x = 3cos2πT.t.

• t = 0 thì x = 3cos0 = 3;

• t = T4 thì x = 3cos2πT.T4= 3cosπ2 = 0;

• t = T2 thì x = 3cos2πT.T2 = 3cosπ = -3

• t = 3T4 thì x = 3cos2πT.3T4 = 3cos3π2 = 0;

• t = T thì x = 3cos2πT.T = 3cos2π = 3

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3cos2πT.t trên đoạn [0; 2T]:

Xét hàm số x = 3cos2πT.t có chu kì là T.

Ta vẽ đồ thị hàm số x = 3cos2πT.t trên đoạn [0; T] theo bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 52)

Bằng cách dịch chuyển đồ thị hàm số x = 3cos2πT.t trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3cos2πT.t trên đoạn [T; 2T].

Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3cos2πT.t trên đoạn [0; 2T] như sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 53)

b)

‒ Với A = 3 cm và φ=π2 thay vào phương trình li độ x = Acos2πT.t+φ ta có:

x = 3cos2πT.tπ2 = 3cosπ22πT.t = 3sin2πT.t

• t = 0 thì x = 3sin2πT.0 = 3sin0 = 0

• t = T4 thì x = 3sin2πT.T4 = 3sinπ2 = 3;

• t = T2 thì x = 3sin2πT.T2 = 3sinπ = 0;

• t = 3T4 thì x = 3sin2πT.3T4 = 3sin3π2 = -3;

• t = T thì x = 3sin2πT.T = 3sin2π = 0.

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3sin2πT.t trên đoạn [0; 2T]:

Xét hàm số x = 3sin2πT.t có chu kì là T.

Ta vẽ đồ thị hàm số x = 3sin2πT.t trên đoạn [0; T] theo bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 54)

Bằng cách dịch chuyển đồ thị hàm số x = 3sin2πT.t trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3sin2πT.t trên đoạn [T; 2T].

Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3sin2πT.t trên đoạn [0; 2T] như sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 55)

c)

‒ Với A = 3 cm và φ=π2 thay vào phương trình li độ x = Acos2πT.t+φ ta có:

x = 3cos2πT.t+π2 = -3cosπ2πT.t+π2

= -3cosπ22πT.t = -3sin2πT.t

• t = 0 thì x = -3sin2πT.0 = -3sin0 = 0

• t = T4 thì x = -3sin2πT.T4 = -3sinπ2 = -3;

• t = T2 thì x = -3sin2πT.T2 = -3sinπ = 0;

• t = 3T4 thì x = -3sin2πT.3T4 = -3sin3π2 = 3;

• t = T thì x = -3sin2πT.T = -3sin2π = 0.

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = -3sin2πT.t trên đoạn [0; 2T]:

Đồ thị hàm số x = -3sin2πT.t là hình đối xứng với đồ thị hàm số x = 3sin2πT.t qua trục hoành:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 56)

Bài 7 trang 31 Toán 11 Tập 1: Trong bài toán mở đầu, hãy chỉ ra một số giá trị của x để ống đựng nước cách mặt nước 2m

Lời giải:

Để ống đựng nước cách mặt nước 2m, ta có phương trình:

|2,5sin(2πx - π2) + 2| = 2

TH1: 2,5sin(2x - π2) + 2 = 2

sin(2πx - π2) = 0

2πx - π2 = kπ

x = 2k +14

Vì x 0 nên

Một số giá trị của x là: 14; 54

TH2:

2,5.sin(2πxπ2)+2=2sin(2πxπ2)=1,6<1

Vì tập giá trị của hàm số sin là [1;1] nên trong trường hợp này phương trình vô nghiệm.

Vậy một số giá trị của x để ống nước cách mặt nước 2m là 14;34;54

Xem thêm các bài giải sách giáo khoa Toán 11 Cánh Dều hay, chi tiết khác:

Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Bài 2: Các phép biến đổi lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Bài 1: Dãy số

Đánh giá

0

0 đánh giá