Bài 4 trang 31 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

383

Với giải Bài 4 trang 31 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài 3: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 4 trang 31 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:

a) Với mỗi m  [‒1;1], có bao nhiêu giá trị απ2;π2 sao cho sinα = m;

b) Với mỗi m  [‒1;1], có bao nhiêu giá trị α  [0; π] sao cho cosα = m;

c) Với mỗi m  ℝ, có bao nhiêu giá trị απ2;π2 sao cho tanα = m;

d) Với mỗi m  ℝ, có bao nhiêu giá trị α  [0; π] sao cho cotα = m.

Lời giải:

a) Xét đồ thị hàm số y = m (m  [‒1;1]) và đồ thị hàm số y = sinx trên Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 48)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.

Vậy với mỗi m  [‒1;1] sẽ có 1 giá trị α Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11 sao cho sinα = m.

b) Xét đồ thị hàm số y = m (m  [‒1;1]) và đồ thị hàm số y = cosx trên [0; π]:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 49)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.

Vậy m  [‒1;1] sẽ có 1 giá trị α  [0; π] sao cho cosα = m.

c) Xét đồ thị hàm số y = m (m  ℝ) và đồ thị hàm số y = tanx trên Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 50)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  ℝ thì hai đồ thị cắt nhau tại 1 điểm.

Vậy với mỗi m  ℝ sẽ có 1 giá trị α Bài 4 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11 sao cho tanα = m.

d) Xét đồ thị hàm số y = m (m  ℝ) và đồ thị hàm số y = cotx trên [0; π]:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 51)

Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m  ℝ thì hai đồ thị cắt nhau tại 1 điểm.

Vậy với mỗi m  ℝ sẽ có 1 giá trị α  [0; π] sao cho cotα = m.

Đánh giá

0

0 đánh giá