Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

824

Toptailieu biên soạn và giới thiệu lời giải Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi SGK Toán 11 Bài 4 từ đó học tốt môn Toán 11.

Giải Bài 4: Phương trình lượng giác cơ bản  SGK Toán 11 Tập 1 (Cánh Diều)

Giải Toán 11 trang 32 Tập 1

Câu hỏi khởi động trang 32 Toán 11 Tập 1: Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip (Hình 32). Độ cao h (km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức h = 550 + 450cosπ50t (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021), trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Tại thời điểm t bằng bao nhiêu thì vệ tinh cách mặt đất 1 000 km; 250 km; 100 km?

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 1)

Trên thực tế, có nhiều bài toán dẫn đến việc giải một trong các phương trình có dạng: sinx = m, cosx = m, tanx = m, cotx = m, trong đó x là ẩn số, m là số thực cho trước. Các phương trình đó là các phương trình lượng giác cơ bản.

Lời giải:

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

• Để vệ tinh cách mặt đất 1 000 km thì 550 + 450cosπ50t = 1 000

450cosπ50t=450

 cosπ50t = 1

π50t = k2π (kZ, t0)

t = k2π.50π = 100k (kZ{0; 1; 2; 3;...}

Vậy tại các thời điểm t = 100k (với k  ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 1 000 km.

• Để vệ tinh cách mặt đất 250 km thì 550 + 450cosπ50t = 250

 450cosπ50t = -300

 cosπ50t = -23

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 2)

(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 3) ta được kết quả gần đúng là 2,3)

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 4)

Vậy tại các thời điểm t ±115π+100k (với k  ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 250 km.

• Để vệ tinh cách mặt đất 100 km thì 550 + 450cosπ50t = 100

 450cosπ50t = -450

 cosπ50t = -1

π50t = π+k2π (kZ, t0).

 t = 50+100k (k{0;1;2;3;...}

Vậy tại các thời điểm t = 50 + 100k (với k  ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 100 km.

I. Phương trình tương đương

Hoạt động 1 trang 32 Toán 11 Tập 1: Cho hai phương trình (với cùng ẩn x):

x2 ‒ 3x + 2 = 0 (1)

(x – 1)(x – 2) = 0 (2)

a) Tìm tập nghiệm S1 của phương trình (1) và tập nghiệm S2 của phương trình (2).

b) Hai tập S1, S2 có bằng nhau hay không?

Lời giải:

a) Ta có:

x2 ‒ 3x + 2 = 0 (1)

Suy ra x = 1 hoặc x = 2.

Vậy phương trình (1) có tập nghiệm S1 = {1; 2}.

(x – 1)(x – 2) = 0 (2)

Suy ra x = 1 hoặc x = 2.

Vậy phương trình (2) có tập nghiệm S2 = {1; 2}.

b) Hai tập S1, S2 bằng nhau vì cùng là tập {1; 2}.

Luyện tập 1 trang 32 Toán 11 Tập 1: Hai phương trình x – 1 = 0 và x21x+1=0 có tương đương không? Vì sao?

Lời giải:

Tập nghiệm của phương trình x – 1 = 0 là S1 = {1}.

Tập nghiệm của phương trình x21x+1 là S2 = {1}.

Vì S1 = S2 nên hai phương trình x – 1 = 0 và x21x+1=0 tương đương.

Giải Toán 11 trang 33 Tập 1

Hoạt động 2 trang 33 Toán 11 Tập 1: Khẳng định 3x ‒ 6 = 0  3x = 6 đúng hay sai?

Lời giải:

Phương trình 3x ‒ 6 = 0 có tập nghiệm S1 = {2}.

Phương trình 3x = 6 có tập nghiệm S2 = {2}.

Vì S1 = S2 nên hai phương trình 3x ‒ 6 = 0 và 3x = 6 tương đương

Khi đó ta viết 3x ‒ 6 = 0  3x = 6.

Vậy khẳng định 3x ‒ 6 = 0  3x = 6 là khẳng định đúng.

Luyện tập 2 trang 33 Toán 11 Tập 1: Giải phương trình: (x – 1)2 = 5x – 11.

Lời giải:

Ta có: (x – 1)2 = 5x – 11.

 x2 – 2x + 1 – (5x – 11) = 0

 x2 – 2x + 1 – 5x + 11 = 0

 x2 – 7x + 12 = 0

 x = 3 hoặc x = 4.

Vậy tập nghiệm của phương trình đã cho là S = {3; 4}.

II. Phương trình sinx = m

Hoạt động 3 trang 33 Toán 11 Tập 1a) Đường thẳng d: y = 12 cắt đồ thị hàm số y = sinx, x  [‒π; π] tại hai giao điểm A0, B (Hình 33). Tìm hoành độ của hai giao điểm A0, B.Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 5)

b) Đường thẳng d: y = 12 cắt đồ thị hàm số y = sinx, x  [π; 3π] tại hai giao điểm A1, B (Hình 33). Tìm hoành độ của hai giao điểm A1, B.

Lời giải:

a) Với x  [‒π; π] ta thấy sin x = 12 tại x = π6 và x = 5π6.

Do đó đường thẳng d: y = 12 cắt đồ thị hàm số y = sinx, x  [‒π; π] tại hai giao điểm A0, B có hoành độ lần lượt là xA0=π6 và xB0=5π6.

b) Với x  [π; 3π] ta thấy sin x = 12 tại x = 13π6 và x = 17π6.

Do đó đường thẳng d: y = 12 cắt đồ thị hàm số y = sinx, x  [π; 3π] tại hai giao điểm A1, B có hoành độ lần lượt là xA1=13π6 và xB1=17π6.

Giải Toán 11 trang 35 Tập 1

Luyện tập 3 trang 34 Toán 11 Tập 1a) Giải phương trình: sin x = 32;

b) Tìm góc lượng giác x sao cho sinx = sin55°.

Lời giải:

a) Do sin x = 32 nên sin x = sinπ3

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 6)

Vậy phương trình sin x = 32 có các nghiệm là x = π3+k2π và x = 2π3+k2π với k  ℤ.

b) sinx = sin55°

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 7)

Vậy các góc lượng giác thỏa mãn sinx = sin55° là x = 55° + k360° và x = 125° + k360° với k  ℤ.

Luyện tập 4 trang 35 Toán 11 Tập 1: Giải phương trình sin2x = sinx+π4.

Lời giải:

Ta có:

sin2x = sinx+π4

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 8)

Vậy phương trình đã cho có các nghiệm là x = π4+k2π và x = π4+k2π3 với k  ℤ.

III. Phương trình cosx = m

Hoạt động 4 trang 35 Toán 11 Tập 1a) Đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x  [‒π; π] tại hai giao điểm C0, D (Hình 34). Tìm hoành độ của hai giao điểm C0, D.

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 9)

b) Đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x  [π; 3π] tại hai giao điểm C1, D (Hình 34). Tìm hoành độ của hai giao điểm C1, D.

Lời giải:

a) Với x  [‒π; π] ta thấy cosx = 12 tại x = -π3 và x = π3.

Do đó đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x  [‒π; π] tại hai giao điểm C0, D có hoành độ lần lượt là xC0=π3 và xD0=π3.

b) Với x  [π; 3π] ta thấy cosx = 12 tại x = 5π3 và x = 7π3.

Do đó đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x  [π; 3π] tại hai giao điểm C1, D có hoành độ lần lượt là xC1=5π3 và xD1=7π3.

Luyện tập 5 trang 36 Toán 11 Tập 1a) Giải phương trình: cosx = -12.

b) Tìm góc lượng giác x sao cho cosx = cos(‒87°).

Lời giải:

a) Do cosx = -12 nên cosx = cos2π3

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 10)

Vậy phương trình đã cho có các nghiệm là x = 2π3+k2π và x = -2π3+k2π với k  ℤ.

b) cosx = cos(‒87°)

 cosx = cos87°

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 11)

Vậy các góc lượng giác x cần tìm là x = 87° + k360° và x = ‒87° + k360° với k  ℤ.

Giải Toán 11 trang 37 Tập 1

Luyện tập 6 trang 37 Toán 11 Tập 1: Giải phương trình được nêu trong bài toán mở đầu.

Lời giải:

• Ta có:

550 + 450cosπ50t = 1 000

450cosπ50t = 450

 cosπ50t = 1

 π50t = k2π (kZ, t0)

 t = k2π.50π = 100k (kZ, t0).

Vậy phương trình này có các nghiệm là t = 100k với k  ℤ, t ≥ 0.

• Ta có:

550 + 450cosπ50t = 250

450cosπ50t = -300

 cosπ50t = -23

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 12)

(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 13) ta được kết quả gần đúng là 2,3)

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 14)

Vậy phương trình có các nghiệm là t115π+100k và t-115π+100k với k  ℤ, t ≥ 0.

• Ta có:

550 + 450cosπ50t = 100

450cosπ50t = -450

 cosπ50t = -1

 π50t = π + k2π (kZ, t0)

 t = 50 + 100k (kZ, t0).

Vậy phương trình có các nghiệm là t = 50 + 100k với k  ℤ, t ≥ 0.

IV. Phương trình tanx = m

Hoạt động 5 trang 37 Toán 11 Tập 1: Quan sát các giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 (Hình 35).

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 15)

a) Từ hoành độ giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 trên khoảng π2;π2, hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó.

b) Có nhận xét gì về nghiệm của phương trình tanx = 1?

Lời giải:

a) Với xπ2;π2 ta thấy tanx = 1 tại x=π4.

Do đó đường thẳng y = 1 cắt đồ thị hàm số y = tanx trên khoảng π2;π2 tại điểm có hoành độ là π4.

Do hàm số y = tanx tuần hoàn với chu kì là π nên đường thẳng y = 1 cắt đồ thị hàm số y = tanx tại các điểm có hoành độ là x = π4+kπ (kZ).

b) Phương trình tanx = 1 có các nghiệm là x = π4+kπ (kZ).

Luyện tập 7 trang 37 Toán 11 Tập 1a) Giải phương trình: tanx = 1.

b) Tìm góc lượng giác x sao cho tanx = tan67°.

Lời giải:

a) Do tanx = 1 nên tanx = tanπ4 x = π4 (kZ).

Vậy phương trình tanx = 1 có các nghiệm là x=π4 với k  ℤ.

b) tanx = tan67°  x = 67° + k180° (k  ℤ).

Vậy các góc lượng giác x cần tìm là x = 67° + k180° với k  ℤ.

V. Phương trình cotx = m

Hoạt động 6 trang 38 Toán 11 Tập 1: Quan sát các giao điểm của đồ thị hàm số y = cotx và đường thẳng y = ‒1 (Hình 36).

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 16)

a) Từ hoành độ giao điểm của đồ thị hàm số y = cotx và đường thẳng y = ‒1 trên khoảng (0; π), hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó.

b) Có nhận xét gì về nghiệm của phương trình cotx = ‒1?

Lời giải:

a) Với x  (0; π), ta thấy cotx = ‒1 tại x=3π4.

Do đó đường thẳng y = ‒1 cắt đồ thị hàm số y = cotx trên khoảng (0; π) tại điểm có hoành độ là 3π4.

Do hàm số y = cotx tuần hoàn với chu kì là π nên đường thẳng y = ‒1 cắt đồ thị hàm số y = cotx tại các điểm có hoành độ là x=3π4+kπ (kZ).

b) Phương trình cotx = ‒1 có các nghiệm là x=-3π4+kπ.

Giải Toán 11 trang 39 Tập 1

Luyện tập 8 trang 39 Toán 11 Tập 1a) Giải phương trình: cotx = 1.

b) Tìm góc lượng giác x sao cho cotx = cot(‒83°).

Lời giải:

a) Do cotx = 1 nên cotx = cotπ4 x=π4+kπ (kZ).

Vậy phương trình cotx = 1 có các nghiệm là x=π4+kπ với k  ℤ.

b) cotx = cot(‒83°)

 x = ‒83° + k180° (k  ℤ).

Vậy các góc lượng giác x cần tìm là x = ‒83° + k180° với k  ℤ.

VI. Giải phương trình lượng giác cơ bản bằng máy tính cầm tay

Luyện tập 9 trang 39 Toán 11 Tập 1: Sử dụng MTCT để giải mỗi phương trình sau với kết quả là radian (làm tròn kết quả đến hàng phần nghìn):

a) sinx = 0,2;

b) cosx = -15;

c) tanx = 2.

Lời giải:

Sau khi chuyển máy tính sang chế độ “radian”.

a) Bấm liên tiếp Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 17)

Ta được kết quả gần đúng là 0,201.

Vậy phương trình sinx = 0,2 có các nghiệm là:

x ≈ 0,201 + k2π, k  ℤ

và x ≈ π – 0,201 + k2π, k  ℤ.

b) Bấm liên tiếp Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 18)

Ta được kết quả gần đúng là 1,772.

Vậy phương trình cosx = -15 có các nghiệm là: x ≈ ± 1,772 + k2π, k  ℤ.

c) Bấm liên tiếp Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 19)

Ta được kết quả gần đúng là 0,955.

Vậy phương trình tanx = 2 có các nghiệm là: x ≈ 0,955 + kπ, k  ℤ.

Bài tập

Giải Toán 11 trang 40 Tập 1

Bài 1 trang 40 Toán 11 Tập 1: Giải phương trình:

a) sin2xπ3=32;

b) sin3x+π4=12;

c) cosx2+π4=32;

d) 2cos3x + 5 = 3;

e) 3tanx = -3;

g) cotx - 3 = 3(1-cotx).

Lời giải:

a) sin2xπ3=32

sin2xπ3 = sin-π3

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 20)

Vậy phương trình đã cho có các nghiệm là x=kπ và x=5π6+kπ với k  ℤ.

b) sin3x+π4=12

 sin3x+π4 = sin-π6

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 21)

Vậy phương trình đã cho có các nghiệm là x = 5π36+k2π3 và x = 11π36+k2π3 với k  ℤ.

c) cosx2+π4=32

cosx2+π4 = cosπ6

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 22)

Vậy phương trình đã cho có các nghiệm là x = π6+k4π và x=5π6+k4π với k  ℤ.

d) 2cos3x + 5 = 3

 cos3x = ‒1

 3x = π + k2π (k  ℤ)

 x = π3+k2π3(k ∈ ℤ).

Vậy phương trình đã cho có các nghiệm là x = π3+k2π3 với k  ℤ.

e) 3tanx = -3

 tanx = -33

 tanx = tan-π6

 x = -π6 + kπ (k ∈ ℤ).

Vậy phương trình đã cho có các nghiệm là x = -π6 + kπ với k  ℤ.

g) cotx - 3 = 3(1-cotx)

 cotx - 3 = 3-3cotx

 (1+3)cotx = 3+3

 cotx = 31+31+3

 cotx = 3

 cotx = cotπ6

 x = π6+kπ (k ∈ ℤ).

Vậy phương trình đã cho có các nghiệm là x = π6+kπ với k  ℤ.

Bài 2 trang 40 Toán 11 Tập 1: Giải phương trình:

a) sin2x+π4 = sinx;

b) sin2x = cos3x;

c) cos22x=cos2x+π6 .

Lời giải:

a) sin2x+π4 = sinx

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 23)

Vậy phương trình đã cho có các nghiệm là x = -π4+k2π và x=-π12+k2π3 với k  ℤ.

b) sin2x = cos3x

cosπ22x = cos3x

 cos3x = cosπ22x

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 24)

Vậy phương trình đã cho có các nghiệm là x=π10+k2π5 và x=π2+k2π với k  ℤ.

c) cos22x=cos2x+π6

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 25)

Vậy phương trình đã cho có các nghiệm là x = π6+kπ và x = -π18+kπ3 với k  ℤ.

Bài 3 trang 40 Toán 11 Tập 1: Dùng đồ thị hàm số y = sinx, y = cosx để xác định số nghiệm của phương trình:

a) 3sinx + 2 = 0 trên khoảng 5π2;5π2 ;

b) cosx = 0 trên đoạn Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 26) .

Lời giải:

a) Ta có: 3sinx + 2 = 0

sinx = -23.

Đường thẳng y = -23 và đồ thị hàm số y = sinx trên khoảng 5π2;5π2 được vẽ như sau:

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 27)

Từ đồ thị, ta thấy đường thẳng y = -23 cắt đồ thị hàm số y = sinx trên khoảng 5π2;5π2 tại 5 điểm A, B, C, D, E.

Vậy phương trình 3sinx + 2 = 0 có 5 nghiệm trên khoảng 5π2;5π2.

b) Đường thẳng y = 0 (trục Ox) và đồ thị hàm số y = cosx trên đoạn Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 28) được vẽ như sau:

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 29)

Từ đồ thị, ta thấy đường thẳng y = 0 cắt đồ thị hàm số y = cosx trên đoạn Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 30) tại 6 điểm M, N, P, Q, I, K.

Vậy phương trình cosx = 0 có 6 nghiệm trên đoạn Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 31).

Bài 4 trang 40 Toán 11 Tập 1: Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số d(t) = 3sinπ182t80+12 với t  ℤ và 0 < t ≤ 365.

(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)

a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?

b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ánh sáng mặt trời?

c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?

Lời giải:

a) Để thành phố A có đúng 12 giờ có ánh sáng mặt trời thì:

3sinπ182t80+12 = 12

 sinπ182t80 = 0

 π182(t-80) = kπ (kZ)

 t - 80 = 182k (kZ)

 t = 80+182k (kZ).

Do t  ℤ và 0 < t ≤ 365 nên ta có:

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 32)

Với k = 0 thì t = 80 + 182.0 = 80;

Với k = 1 thì t = 80 + 182.1 = 262.

Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và ngày thứ 262 trong năm.

b) Để thành phố A có đúng 9 giờ có ánh sáng mặt trời thì:

3sinπ182t80+12 = 9

 sinπ182t80 = -1

 π182(t-80) = -π2 + k2π (kZ)

 t - 80 = -91+364k (kZ)

 t = -11+364k (kZ)

Do t  ℤ và 0 < t ≤ 365 nên ta có:

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 33)

Với k = 1 thì t = ‒11 + 364.1 = 353.

Vậy thành phố A có đúng 9 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.

c) Để thành phố A có đúng 15 giờ có ánh sáng mặt trời thì:

3sinπ182t80+12 = 15

 sinπ182t80 = 1

 π182(t-80) = π2 + k2π (kZ)

 t - 80 = 91+364k (kZ)

 t = 171+364k (kZ)

Do t  ℤ và 0 < t ≤ 365 nên ta có:

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 34)

Với k = 0 thì t = 171 + 364.0 = 171.

Vậy thành phố A có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.

Bài 5 trang 40 Toán 11 Tập 1: Hội Lim (tỉnh Bắc Ninh) được tổ chức vào mùa xuân thường có trò chơi đánh đu. Khi người chơi đu nhún đều, cây đu sẽ đưa người chơi đu dao động quanh vị trí cân bằng (Hình 38). Nghiên cứu trò chơi này, người ta thấy khoảng cách h(m) từ vị trí người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian t (s) (với t ≥ 0) bởi hệ thức h = |d| với d = 3cosπ32t1, trong đó ta quy ước d > 0 khi vị trí cân bằng ở phía sau lưng người chơi đu và d < 0 trong trường hợp ngược lại (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020). Vào thời gian t nào thì khoảng cách h là 3 m, 0 m?

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 35)

Lời giải:

• Để khoảng cách h(m) từ vị trí người chơi đu đến vị trí cân bằng là 3 m thì:

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 36)

Do t ≥ 0, k  ℤ nên k  {0; 1; 2; …}

Khi đó Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 37)

Vậy t12;2;72;5;132;8;... (giây) thì khoảng cách h là 3 m.

• Để khoảng cách h(m) từ vị trí người chơi đu đến vị trí cân bằng là 0 m thì:

Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản (ảnh 38)

Do t ≥ 0, k  ℤ nên k  {0; 1; 2; …}, khi đó t{54;114;174;...}.

Vậy t{54;114;174;...} (giây) thì khoảng cách h là 0 m.

Xem thêm các bài giải sách giáo khoa Toán 11 Cánh Dều hay, chi tiết khác:

Bài 2: Các phép biến đổi lượng giác

Bài 3: Hàm số lượng giác và đồ thị

Bài tập cuối chương 1

Bài 1: Dãy số

Bài 2: Cấp số cộng

Đánh giá

0

0 đánh giá