SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản 

345

Toptailieu biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 4: Phương trình lượng giác cơ bản sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 4.

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản

SBT Toán 11 trang 29 Tập 1 (Cánh Diều)

Bài 48 trang 29 SBT Toán 11 Tập 1Phương trình sin x = 1 có các nghiệm là:

A. x=π2+k2πk .

B. x=π2+kπk .

C. x=π+k2πk .

D. x=k2π  k .

Lời giải:

Đáp án đúng là: A

Ta có: sin x = 1 x=π2+k2πk .

Bài 49 trang 29 SBT Toán 11 Tập 1Số nghiệm của phương trình sin x = 0,3 trên khoảng (0; 4π) là:

A. 2.

B. 3.

C. 4.

D. 6.

Lời giải:

Đáp án đúng là: C

Xét đồ thị hàm số y = sin x và đường thẳng y = 0,3.

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 1)

Dựa vào đồ thị ta thấy đồ thị hàm số y = sin x và đường thẳng y = 0,3 cắt nhau tại 4 điểm phân biệt trên khoảng (0; 4π) nên số nghiệm của phương trình sin x = 0,3 trên khoảng (0; 4π) là 4.

Bài 50 trang 29 SBT Toán 11 Tập 1Phương trình cosx=12  có các nghiệm là:

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 2)

Lời giải:

Đáp án đúng là: D

Ta có: cosx=12cosx=cos2π3SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 3)

Bài 51 trang 29 SBT Toán 11 Tập 1Giá trị của m để phương trình cos x = m có nghiệm trên khoảng π2;π2  là:

A. 0 ≤ m < 1.

B. 0 ≤ m ≤ 1.

C. 0 < m ≤ 1.

D. 0 < m < 1.

Lời giải:

Đáp án đúng là: C

Xét đồ thị hàm số y = cos x và đường thẳng y = m.

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 4)

Trên khoảng π2;π2  đường thẳng y = m cắt đồ thị hàm số y = cos x khi m ∈ (0; 1].

Do đó, Giá trị của m để phương trình cos x = m có nghiệm trên khoảng (-π/2;π/2) là π2;π2  là 0 < m ≤ 1.

Bài 52 trang 29 SBT Toán 11 Tập 1Phương trình tan x = − 1 có các nghiệm là:

A. x=π4+k2π  k .

B. x=π4+kπ  k .

C. x=π2+k2π  k .

D. x=π4+k2π  k .

Lời giải:

Đáp án đúng là: B

Ta có tan x = − 1 x=π4+kπ  k .

Bài 53 trang 29 SBT Toán 11 Tập 1Phương trình cot x = 0 có các nghiệm là:

A. x=π4+kπ  k .

B. x=π2+k2π  k .

C. x=kπ  k .

D. x=π2+kπ  k .

Lời giải:

Đáp án đúng là: D

Ta có cot x = 0 x=π2+kπ  k .

Bài 54 trang 29 SBT Toán 11 Tập 1Phương trình sin x – cos x = 0 có các nghiệm là:

A. x=π4+kπ  k .

B. x=π4+kπ  k .

C. x=π4+k2π  k .

D. x=π4+k2π  k .

Lời giải:

Đáp án đúng là: A

Ta có sin x – cos x = 0 ⇔ sin x = cos x (*)

Vì sin x và cos x không thể đồng thời bằng 0 do sin2 x + cos2 x = 1 nên (*) tương đương với tan x = 1, tức là x=π4+kπ  k .

SBT Toán 11 trang 30 Tập 1 (Cánh Diều)

Bài 55 trang 30 SBT Toán 11 Tập 1Phương trình 3cosx+3sinx=0  có các nghiệm là:

A. x=π6+kπ  k .

B. x=π3+kπ  k .

C. x=π3+kπ  k .

D. x=π6+kπ  k .

Lời giải:

Đáp án đúng là: A

Ta có 3cosx+3sinx=0

3cosx+3sinx=0

cosx+3sinx=0

12cosx+32sinx=0

cosπ3cosx+sinπ3sinx=0

cosπ3x=0

π3x=π2+kπ   k

x=π6+kπ  k.

Bài 56 trang 30 SBT Toán 11 Tập 1Phương trình cos2x=cosx+π4  có các nghiệm là:

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 5)

Lời giải:

Đáp án đúng là: B

Ta có cos2x=cosx+π4

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 6)

Bài 57 trang 30 SBT Toán 11 Tập 1Phương trình sin 3x = cos x có các nghiệm là:

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 7)

Lời giải:

Đáp án đúng là: A

Ta có sin 3x = cos x

sin3x=sinπ2x

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 8)

Bài 58 trang 30 SBT Toán 11 Tập 1Giải phương trình:

a) sin3x=32 ;

b) sinx2+π4=22 ;

c) cos3x+π3=12 ;

d) 2cosx+3=0 ;

e) 3tanx1=0 ;

g) cotx+π5=1 .

Lời giải:

a) Do sinπ3=32  nên sin3x=32sin3x=sinπ3

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 9)

b) Do sinπ4=22  nên  sinx2+π4=22 sinx2+π4=sinπ4

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 10)

c) Do cos2π3=12  nên cos3x+π3=12 cos3x+π3=cos2π3

 Giải phương trình trang 30 SBT Toán 11

d)   2cosx+3=0

cosx=32

cosx=cos5π6  (do cos5π6=32 )

x=±5π6+k2π  k.

e)  3tanx1=0

  tanx=13

 tanx=tanπ6   (do tanπ6=13 )

x=π6+kπ  k.

g) Do cotπ4=1  nên cotx+π5=1 cotx+π5=cotπ4

x+π5=π4+kπ   k

x=π20+kπ   k.

Bài 59 trang 30 SBT Toán 11 Tập 1Tìm góc lượng giác x sao cho:

a) sin 2x = sin 42°;

b) sin(x – 60°) = 32 ;

c) cos(x + 50°) = 12 ;

d) cos 2x = cos (3x + 10°);

e) tan x = tan 25°;

f) cot x = cot (– 32°).

Lời giải:

a) sin 2x = sin 42°

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 12)

b) Do sin60°=32  nên sin(x – 60°) = 32 ⇔ sin(x – 60°) = sin(– 60°)

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 13)

c) Do cos60°=12  nên cos(x + 50°) = 12  ⇔ cos(x + 50°) = cos 60°

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 15)

d) cos 2x = cos (3x + 10°)

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 16)

e) tan x = tan 25°

⇔ x = 25° + k180° (k ∈ ℤ).

f) cot x = cot (– 32°)

⇔ x = – 32° + k180° (k ∈ ℤ).

SBT Toán 11 trang 31 Tập 1 (Cánh Diều)

Bài 60 trang 31 SBT Toán 11 Tập 1Giải phương trình:

a) sin3xπ4=sinx+π6 ;

b) cos2xπ3=sinπ4x ;

c) sin2x+π4=sin22x+π2 ;

d) cos22x+π2=sin2x+π6 ;

e) cos x + sin x = 0;

g) sin x – 3 cos x = 0.

Lời giải:

a) sin3xπ4=sinx+π6

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 17)

b)  cos2xπ3=sinπ4x

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 18)

c)  sin2x+π4=sin22x+π2

 1cos2x+π22=1cos4x+π2(Sử dụng công thức hạ bậc)

cos2x+π2=cos4x+π.

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 19)

x=π4+kπ3   k

d)  cos22x+π2=sin2x+π6

1+cos4x+π2=1cos2x+π32    (sử dụng công thức hạ bậc)

cos4x+π=cos2x+π3

cos4x+π=cos2x+π3+π    (sử dụng quan hệ hơn kém π)

cos4x+π=cos2x+4π3

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 20)

e) cos x + sin x = 0

⇔ cos x = – sin x

⇔ tan x = – 1

x=π4+kπ  k

g) sin x – 3 cos x = 0

12sinx32cosx=0

sinxcosπ3cosxsinπ3=0

sinxπ3=0

xπ3=kπ     k

x=π3+kπ     k.

Bài 61 trang 31 SBT Toán 11 Tập 1Dùng đồ thị hàm số y = sin x, y = cos x để xác định số nghiệm của phương trình:

a) 5sin x – 3 = 0 trên đoạn [– π; 4π];

b) 2 cos x + 1 = 0 trên khoảng (– 4π; 0).

Lời giải:

a) Ta có 5sin x – 3 = 0 sinx=35 .

Do đó, số nghiệm của phương trình 5sin x – 3 = 0 trên đoạn [– π; 4π] bằng số giao điểm của đồ thị hàm số y = sin x trên đoạn [– π; 4π] và đường thẳng sinx=35 .

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 21)

Dựa vào đồ thị, ta thấy đồ thị hàm số y = sin x trên đoạn [– π; 4π] và đường thẳng y=35  cắt nhau tại 4 điểm phân biệt.

Vậy phương trình 5sin x – 3 = 0 có 4 nghiệm trên đoạn [– π; 4π].

b) Ta có 2 cos x + 1 = 0 cosx=12 .

Do đó, số nghiệm của phương trình 2 cos x + 1 = 0 trên đoạn (– 4π; 0) bằng số giao điểm của đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng y=12 .

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 22)

Dựa vào đồ thị, ta thấy đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng y=12  cắt nhau tại 4 điểm phân biệt.

Vậy phương trình 2 cos x + 1 = 0 có 4 nghiệm trên khoảng (– 4π; 0).

Bài 62 trang 31 SBT Toán 11 Tập 1Mực nước cao nhất tại một cảng biển là 16 m khi thủy triều lên cao và sau 12 giờ khi thủy triều xuống thấp thì mực nước thấp nhất là 10 m. Đồ thị ở Hình 15 mô tả sự thay đổi chiều cao của mực nước tại cảng trong vòng 24 giờ tính từ lúc nửa đêm. Biết chiều cao của mực nước h (m) theo thời gian t (h) (0 ≤ t ≤ 24) được cho bởi công thức h=m+acosπ12t  với m, a là các số thực dương cho trước.

a) Tìm m, a.

b) Tìm thời điểm trong ngày khi chiều cao của mực nước là 11,5 m.

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 23)

Lời giải:

a) Ta có h=m+acosπ12t .

Vì 1cosπ12t1  với mọi 0 ≤ t ≤ 24 nên mam+acosπ12tm+a .

Do vậy chiều cao của mực nước cao nhất bằng m + a khi cosπ12t=1  và thấp nhất bằng m – a khi cosπ12t=1 .

Theo giả thiết, ta có: Mực nước cao nhất tại một cảng biển là 16 m khi thủy triều lên cao và sau 12 giờ khi thủy triều xuống thấp

Vậy m = 13 và a = 3.

b) Từ câu a) ta có công thức h=13+3cosπ12t .

Do chiều cao của mực nước là 11,5 m nên 13+3cosπ12t=11,5 cosπ12t=12 

cosπ12t=cos2π3

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 25)

Mà 0 ≤ t ≤ 24 nên t = 8 và t = 16.

Vậy ứng với hai thời điểm trong ngày là t = 8 (h) và t = 16 (h) thì chiều cao của mực nước là 11,5 m.a

Xem thêm các bài SBT Toán 11 Cánh Diều hay, chi tiết khác:

Bài 3: Hàm số lượng giác và đồ thị

Bài tập cuối chương 1

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Đánh giá

0

0 đánh giá