Dùng đồ thị hàm số y = sin x, y = cos x để xác định số nghiệm của phương trình: 5sin x – 3 = 0 trên đoạn [– π; 4π]

190

Với Giải Bài 61 trang 31 SBT Toán 11 Tập 1 trong Bài 4: Phương trình lượng giác cơ bản Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Dùng đồ thị hàm số y = sin x, y = cos x để xác định số nghiệm của phương trình: 5sin x – 3 = 0 trên đoạn [– π; 4π]

Bài 61 trang 31 SBT Toán 11 Tập 1Dùng đồ thị hàm số y = sin x, y = cos x để xác định số nghiệm của phương trình:

a) 5sin x – 3 = 0 trên đoạn [– π; 4π];

b) 2 cos x + 1 = 0 trên khoảng (– 4π; 0).

Lời giải:

a) Ta có 5sin x – 3 = 0 sinx=35 .

Do đó, số nghiệm của phương trình 5sin x – 3 = 0 trên đoạn [– π; 4π] bằng số giao điểm của đồ thị hàm số y = sin x trên đoạn [– π; 4π] và đường thẳng sinx=35 .

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 21)

Dựa vào đồ thị, ta thấy đồ thị hàm số y = sin x trên đoạn [– π; 4π] và đường thẳng y=35  cắt nhau tại 4 điểm phân biệt.

Vậy phương trình 5sin x – 3 = 0 có 4 nghiệm trên đoạn [– π; 4π].

b) Ta có 2 cos x + 1 = 0 cosx=12 .

Do đó, số nghiệm của phương trình 2 cos x + 1 = 0 trên đoạn (– 4π; 0) bằng số giao điểm của đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng y=12 .

SBT Toán 11 (Cánh diều) Bài 4: Phương trình lượng giác cơ bản  (ảnh 22)

Dựa vào đồ thị, ta thấy đồ thị hàm số y = cos x trên đoạn (– 4π; 0) và đường thẳng y=12  cắt nhau tại 4 điểm phân biệt.

Vậy phương trình 2 cos x + 1 = 0 có 4 nghiệm trên khoảng (– 4π; 0).

Đánh giá

0

0 đánh giá