Bài 6 trang 31 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

312

Với giải Bài 6 trang 31 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài 3: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 6 trang 31 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

Bài 6 trang 31 Toán 11 Tập 1: Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó t là thời gian tính bằng giây, A là biên độ dao động và x là li độ dao động đều được tính bằng centimét. Khi đó, chu kì T của dao động là T=2πω. Xác định giá trị của li độ khi t = 0, t=T4,t=T2,t=3T4, t = T và vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong trường hợp:

a) A = 3 cm, φ = 0;

b) A = 3 cm, φ=π2;

c) A = 3 cm, φ=π2.

Lời giải:

Từ T = 2πω ta có ω=2πT.

Khi đó ta có phương trình li độ là x = Acos2πT.t+φ.

a)

‒ Với A = 3 cm và φ = 0 thay vào phương trình li độ x = Acos2πT.t+φ ta có:

x = 3cos2πT.t.

• t = 0 thì x = 3cos0 = 3;

• t = T4 thì x = 3cos2πT.T4= 3cosπ2 = 0;

• t = T2 thì x = 3cos2πT.T2 = 3cosπ = -3

• t = 3T4 thì x = 3cos2πT.3T4 = 3cos3π2 = 0;

• t = T thì x = 3cos2πT.T = 3cos2π = 3

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3cos2πT.t trên đoạn [0; 2T]:

Xét hàm số x = 3cos2πT.t có chu kì là T.

Ta vẽ đồ thị hàm số x = 3cos2πT.t trên đoạn [0; T] theo bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 52)

Bằng cách dịch chuyển đồ thị hàm số x = 3cos2πT.t trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3cos2πT.t trên đoạn [T; 2T].

Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3cos2πT.t trên đoạn [0; 2T] như sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 53)

b)

‒ Với A = 3 cm và φ=π2 thay vào phương trình li độ x = Acos2πT.t+φ ta có:

x = 3cos2πT.tπ2 = 3cosπ22πT.t = 3sin2πT.t

• t = 0 thì x = 3sin2πT.0 = 3sin0 = 0

• t = T4 thì x = 3sin2πT.T4 = 3sinπ2 = 3;

• t = T2 thì x = 3sin2πT.T2 = 3sinπ = 0;

• t = 3T4 thì x = 3sin2πT.3T4 = 3sin3π2 = -3;

• t = T thì x = 3sin2πT.T = 3sin2π = 0.

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3sin2πT.t trên đoạn [0; 2T]:

Xét hàm số x = 3sin2πT.t có chu kì là T.

Ta vẽ đồ thị hàm số x = 3sin2πT.t trên đoạn [0; T] theo bảng sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 54)

Bằng cách dịch chuyển đồ thị hàm số x = 3sin2πT.t trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3sin2πT.t trên đoạn [T; 2T].

Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3sin2πT.t trên đoạn [0; 2T] như sau:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 55)

c)

‒ Với A = 3 cm và φ=π2 thay vào phương trình li độ x = Acos2πT.t+φ ta có:

x = 3cos2πT.t+π2 = -3cosπ2πT.t+π2

= -3cosπ22πT.t = -3sin2πT.t

• t = 0 thì x = -3sin2πT.0 = -3sin0 = 0

• t = T4 thì x = -3sin2πT.T4 = -3sinπ2 = -3;

• t = T2 thì x = -3sin2πT.T2 = -3sinπ = 0;

• t = 3T4 thì x = -3sin2πT.3T4 = -3sin3π2 = 3;

• t = T thì x = -3sin2πT.T = -3sin2π = 0.

‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = -3sin2πT.t trên đoạn [0; 2T]:

Đồ thị hàm số x = -3sin2πT.t là hình đối xứng với đồ thị hàm số x = 3sin2πT.t qua trục hoành:

Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị (ảnh 56)

 

Đánh giá

0

0 đánh giá