Với giải SGK Toán 11 Cánh Diều trang 25 chi tiết trong Bài 3: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 25 Tập 1 (Cánh Diều)
Hoạt động 5 trang 25 Toán 11 Tập 1: Quan sát đồ thị hàm số y = sinx ở Hình 24.
a) Nêu tập giá trị của hàm số y = sinx.
b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = sinx.
c) Bằng cách dịch chuyển đồ thị hàm số y = sinx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta có nhận được đồ thị hàm số y = sinx trên đoạn [π; 3π] hay không? Hàm số y = sinx có tuần hoàn hay không?
d) Tìm khoảng đồng biến, nghịch biến của hàm số y = sinx.
Lời giải:
a) Tập giá trị của hàm số y = sinx là [‒1; 1].
b) Gốc toạ độ O là tâm đối xứng của đồ thị hàm số.
Do đó hàm số y = sinx là hàm số lẻ.
c)
‒ Bằng cách dịch chuyển đồ thị hàm số y = sinx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta sẽ nhận được đồ thị hàm số y = sinx trên đoạn [π; 3π].
Làm tương tự như trên ta sẽ được đồ thị hàm số y = sinx trên ℝ.
‒ Xét hàm số f(x) = y = sinx trên ℝ, với T = 2π và x ∈ ℝ ta có:
• x + 2π ∈ ℝ và x – 2π ∈ ℝ;
• f(x + 2π) = f(x)
Do đó hàm số y = sinx là hàm số tuần hoàn với chu kì T = 2π.
d) Quan sát đồ thị hàm số y = sinx ta thấy:
• Hàm số đồng biến trên mỗi khoảng
Ta có: ;
;
…
Do đó ta có thể viết hàm số đồng biến trên mỗi khoảng với k ∈ ℤ.
• Hàm số nghịch biến trên mỗi khoảng
Ta có: ;
…
Do đó ta có thể viết hàm số nghịch biến trên mỗi khoảng với k ∈ ℤ.
Luyện tập 3 trang 25 Toán 11 Tập 1: Hàm số y = sinx đồng biến hay nghịch biến trên khoảng ?
Lời giải:
Do nên hàm số y = sinx nghịch biến trên khoảng .
Xem thêm các bài giải Toán 11 Cánh Diều hay, chi tiết khác:
Hoạt động 1 trang 22 Toán 11 Tập 1: a) Cho hàm số f(x) = x2.• Với x ∈ ℝ, hãy so sánh f(‒x) và f(x).
Luyện tập 1 trang 23 Toán 11 Tập 1: a) Chứng tỏ rằng hàm số g(x) = x3 là hàm số lẻ.
Luyện tập 2 trang 23 Toán 11 Tập 1: Cho ví dụ về hàm số tuần hoàn.
Hoạt động 4 trang 24 Toán 11 Tập 1: Cho hàm số y = sinx.
Hoạt động 5 trang 25 Toán 11 Tập 1: Quan sát đồ thị hàm số y = sinx ở Hình 24.
Luyện tập 3 trang 25 Toán 11 Tập 1: Hàm số y = sinx đồng biến hay nghịch biến trên khoảng ?
Hoạt động 7 trang 26 Toán 11 Tập 1: Cho hàm số y = cosx.
Hoạt động 8 trang 27 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cosx ở Hình 27.
Luyện tập 4 trang 27 Toán 11 Tập 1: Hàm số y = cosx đồng biến hay nghịch biến trên khoảng (‒2π; ‒π)?
Hoạt động 10 trang 28 Toán 11 Tập 1: Cho hàm số y = tanx.
Hoạt động 11 trang 28 Toán 11 Tập 1: Quan sát đồ thị hàm số y = tanx ở Hình 29.
Hoạt động 13 trang 29 Toán 11 Tập 1: Cho hàm số y = cotx.
Bài 1 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng để:
Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:
Bài 5 trang 31 Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số:
Xem thêm các bài giải sách giáo khoa Toán 11 Cánh Dều hay, chi tiết khác:
Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác
Bài 2: Các phép biến đổi lượng giác
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.